Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T16:50:59.922Z Has data issue: false hasContentIssue false

Genetic outcomes from a farmer-assisted landrace selection programme to develop a synthetic variety of broccoli

Published online by Cambridge University Press:  09 January 2014

Simona Ciancaleoni
Affiliation:
Dipartimento di Biologia Applicata (DBA), University of Perugia, Borgo XX Giugno 74, Perugia06121, Italy
Lorenzo Raggi
Affiliation:
Dipartimento di Biologia Applicata (DBA), University of Perugia, Borgo XX Giugno 74, Perugia06121, Italy
Valeria Negri*
Affiliation:
Dipartimento di Biologia Applicata (DBA), University of Perugia, Borgo XX Giugno 74, Perugia06121, Italy
*
* Corresponding author. Fax: +390755856224. E-mail: [email protected]

Abstract

To develop synthetic varieties (Syn) of broccoli for organic agriculture, we initiated a breeding programme from a landrace (LR). A Syn was obtained through a farmer-assisted selection programme that mirrors the original LR. The diversity level of the Syn was assessed using 14 putatively neutral microsatellite markers (simple sequence repeats (SSR)) and seven SSR related to genes involved in flowering control. Four commercial F1 hybrids were also assessed. Despite the strict selection procedure applied by the farmer to reproduce the LR annually and to obtain the Syn, the detected diversity level was high and similar to that of non-selected LRs. The possible reasons for these genetic outcomes (i.e. SSR position in the genome and farmer selection methods) are discussed here.

Type
Short Communication
Copyright
Copyright © NIAB 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksoy, S, Almeida-Val, VHF, Azevedo, VCR, Baucom, R, Bazaga, P, Beheregaray, LB, Bennetzen, JL, Brassaloti, RA, Burgess, TI, Caccone, A, Chang, S-M, Ciampi, AY, Ciancaleoni, S, Climaco, G, Clouet, C, Coimbra, MRM, Coutinho, LL, Dantas, HL, De Vega, C, Echodu, R, Enyaru, J, Figueira, A, Filho, MAG, Foltz, B, Fressigne, L, Gadomski, M, Gauthier, N, Herrera, CM, Hyseni, C, Jorge, EC, Zkaczmarczyk, D, Knott, E, Kuester, A, Lima, APS, Lima, MA, Lima, MP, Longo, ALB, Lor, G, Maggioni, R, Marques, TS, Martins, AR, Matoso, DA, Medrano, M, Mendonca, MAC, Mettler, R, Nascimento, PRM, Negri, V, Oliveira, KKC, Oliveira, LO, Ovcarenko, I, Paula-Silva, MN, Raggi, L, Sandoval-Castillo, J, Anjos Santos, CH, Martinschaefer, H, Segelbacher, G, Seino, MM, Sistrom, M, Taole, MM, Teske, PR, Tsagkarakou, A, Verdade, LM, Villela, PMS, Vinson, CC, Wingfield, BD and Wingfield, MJ (2013) Permanent genetic resources added to Molecular Ecology Resources Database 1 October 2012–30 November 2012. Molecular Ecology Resources 13: 341343.Google ScholarPubMed
Cheng, X, Xu, J, Xia, S, Gu, J, Yang, Y, Fu, J, Qian, Xi, Zhang, S, Wu, F and Liu, K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus . Theoretical and Applied Genetics 118: 11211131.CrossRefGoogle ScholarPubMed
Ciancaleoni, S, Chiarenza, GL, Raggi, L, Branca, F and Negri, V (2013) Diversity characterisation of broccoli landraces for their on-farm (in situ) safeguard and use in breeding programs. Genetic Resources and Crop Evolution doi:101007/s10722-013-0049-2.Google Scholar
Falcinelli, M and Torricelli, R (2004) A new variety of luzerne for Italian organic farming. Proceeding of the First World Conference on Organic Seed, 5–7 July 2004, Rome, Italy . Rome: FAO, pp. 185186.Google Scholar
FAOSTAT (2011) Available at: http://faostat3.fao.org/home/index.html (accessed 24 June 2013).Google Scholar
Hammer, K and Gladis, TH (2001) Nutzung genetischer Ressourcen – ökologischer Wert der Biodiversität Schriften Genetik Resourcen. vol. 16. Bonn: Zadi.Google Scholar
Hammer, K, Gladis, TH, Laghetti, G and Pignone, D (2013) The wild and the grown – remarks on Brassica. International Journal of AgriScience 3: 453480.Google Scholar
ISTAT (2011) Available at: http://dati.istat.it/Index.aspx?DataSetCode = DCSP_COLTIVAZ&Lang (accessed 21 January 2013).Google Scholar
Koutis, K, Mavromatis, AG, Baxevanos, D and Kuotsika-Sotiriou, M (2012) Multienvironmental evaluation of wheat landraces by GGE biplot analysis for organic breeding. Journal of Agricultural Science 3: 6674.Google Scholar
Lammerts van Bueren, ET, Jones, SS, Tamm, L, Murphy, KM, Myers, JR, Leifert, C and Messmer, MM (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. Wageningen Journal of Life Sciences 58: 193205.CrossRefGoogle Scholar
Li, H, Chen, X, Yang, Y, Xu, J, Gu, J, Fu, J, Qian, X, Zhang, S, Wu, J and Liu, K (2011) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea . Molecular Breeding 28: 585596.CrossRefGoogle Scholar
Love, CG, Batley, J, Lim, G, Robinson, AJ, Savage, D, Singh, D, Spangenberg, GC and Edwards, D (2004) New computational tools for Brassica genome research. Comparative and Functional Genomics 5: 276280.CrossRefGoogle ScholarPubMed
Negri, V, Maxted, N and Veteläinen, M (2009) European landrace conservation: an introduction. In: Vetelainen, M, Negri, V and Maxted, N (eds) European Landraces: On-farm Conservation, Management and Use. Bioversity Technical Bulletin No. 15 . Rome: Bioversity International Publications, pp. 122.Google Scholar
Negri, V, Pacicco, L, Bodesmo, M and Torricelli, R (2013) The First Italian Inventory of in situ Maintained Landraces. On CD ROM . ISBN 978-88-6074-279-7. Perugia: Morlacchi Editrice.Google Scholar
Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.CrossRefGoogle ScholarPubMed
Peakall, R and Smouse, PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288295.CrossRefGoogle Scholar
Polegri, L and Negri, V (2010) Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genetic Resources and Crop Evolution 57: 867880.CrossRefGoogle Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 27312739.CrossRefGoogle ScholarPubMed
Torricelli, R, Tiranti, B, Spataro, G, Castellini, G, Albertini, E, Falcinelli, M and Negri, V (2013) Differentiation and structure of an Italian landrace of celery (Apium graveolens L.): inferences for on farm conservation. Genetic Resources and Crop Evolution 60: 9951006.CrossRefGoogle Scholar
Supplementary material: PDF

Ciancaleoni Supplementary Material

Table S1

Download Ciancaleoni Supplementary Material(PDF)
PDF 9.5 KB