Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T21:22:03.725Z Has data issue: false hasContentIssue false

Exploitation of genetics for improvement of morphological traits in segregating population of underutilized ornamental herb (Catharanthus roseus (L.) G. Don)

Published online by Cambridge University Press:  27 May 2024

Bolagam Ravikumar*
Affiliation:
Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana 141004, India Department of Horticulture, Lovely Professional University, Phagwara 144411, India
Kiranjit Kaur Dhatt
Affiliation:
Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana 141004, India
*
Corresponding author: Bolagam Ravikumar; Email: [email protected]

Abstract

Periwinkle (Catharanthus roseus (L.) G. Don) is a vital summer season perennial semi-shrub and multipurpose drought-resilient flower crop of the tropical region of the Indian subcontinent. This industrially dominant crop is primarily used as border, bedding and pot culture in landscaping. There is a lack of information on the genetics of important traits and its correlation with quantitative characters like flower yield and understanding the co-segregation of these traits might be useful in crop improvement. Therefore, the present study was performed using 30 F2 segregating lines of Catharanthus developed from diallel crossing of six genetically dissimilar parents varied in many traits. Phenotyping of population was executed for 12 morphological traits. Results indicated that a significant positive association between days to flowering and plant height (0.753**), and leaf area and number of branches (0.463**) was recorded. Flowers per plant exhibit significantly positive correlation with all attributes except flower diameter (−005). The path coefficient analysis reported solely two traits, such as number of seeds per follicle (0.357) and corolla tube length (0.308) exerted positively significant direct effects on flower yield per plant. The scrutiny of principal components showed that the first three components demonstrated a cumulative variability of 70.1%. The dissipating of F2 plants in bi-plot is impenitent to our prior reports that six inbred lines were genetically diverse and quite different for the characters under study. The current research might be useful in breeding programmes for selection and hybridization of periwinkle in future.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adekoya, M, Ariyo, O, Kehinde, OB and Adegbite, A (2013) Correlation and path analyses of seed yield in okra (Abelmoschus esculentus (L.) Moench) grown under different cropping seasons. Tropical Agriculture 90, 3140.Google Scholar
Bharathi, TU, Jawaharlal, M, Kannan, M, Manivannan, N and Raveendran, M (2014) Correlation and path analysis in African marigold (Tagetes erecta L.). The Bioscan 9, 16731676.Google Scholar
Esmail, RM (2007) Genetic analysis of yield and its contributing traits in two intra-specific cotton crosses. Journal of Applied Sciences Research 3, 20752080.Google Scholar
Giri, TK, Kumar, M, Kumar, S, Sharma, VR, Naresh, RK and Malik, S (2018) Character association and path coefficient analysis of yield and yield related traits in marigold (Tagetes erecta L.). Biotech Today 8, 4145.CrossRefGoogle Scholar
Glover, MA, Willmot, DB, Darrah, L, Eh, Bruce and Zhu, X (2005) Diallel analyses of agronomic traits using Chinese and US maize germplasm. Crop Science 45, 10961102.CrossRefGoogle Scholar
Hallauer, AR (2007) History, contribution and future of quantitative genetics in plant breeding. Crop Science 47, 419.CrossRefGoogle Scholar
Howe, TK and Waters, WE (1994) Evaluation of Catharanthus (vinca) cultivars for the landscape. Proceedings of the Annual Meeting of the Florida State Horticultural Society 107, 404408.Google Scholar
Jibouri, NA, Miller, PA and Robinson, HF (1958) Genotypic and environmental variances and co-variances in upland cotton crosses of inter-specific origin. Agronomy Journal 50, 633636.CrossRefGoogle Scholar
Krishnan, R, Naragund, VR and Kumar, VT (1979) Evidences for outbreeding in Catharanthus roseus. Current Science 48, 8082.Google Scholar
Kulkarni, RN (1999) Evidence for phenotypic assortative mating for flower colour in periwinkle. Plant Breeding 118, 561564.CrossRefGoogle Scholar
Malaghan, S, Madalageri, MB and Kotikal, YK (2014) Correlation and path analysis in cluster bean (Cyamopsis tetragonoloba (L.) Taub) for vegetable pod yield and its component characters. The Bioscan 9, 15831586.Google Scholar
Ravikumar, B and Dhatt, KK (2023a) Assessment of genetic parameters in periwinkle through diallel analysis. Indian Journal of Horticulture 80, 264268.CrossRefGoogle Scholar
Ravikumar, B and Dhatt, KK (2023b) Genetic analysis of flower colour variation in periwinkle (Catharanthus roseus L.) inbred lines. Genetic Resources and Crop Evolution 71, 17.Google Scholar
Ravikumar, B and Dhatt, KK (2024) Assessment of combining ability for targeted traits in periwinkle (Catharanthus roseus (L.) G. Don) through diallel analysis. Journal of Applied Research on Medicinal and Aromatic Plants 40, 100539.CrossRefGoogle Scholar
Rukhsar, S, Patel, MP, Parmar, DJ, Kalola, AD and Kumar, S (2017) Morphological and molecular diversity patterns in castor germplasm accessions. Industrial Crops and Products 97, 316323.CrossRefGoogle Scholar
Sharma, R, Mahla, HR, Kumar, S and Gaikwad, K (2021) Study of correlation, path coefficient and linkage of flower colour and hairiness with yield controlling quantitative traits in segregating population of cluster bean. Current Plant Biology 26, 100110.CrossRefGoogle Scholar
Singh, M (2021) Combining ability analysis for growth and flowering characteristics of periwinkle (Catharanthus roseus L.) (PhD thesis Punjab Agricultural University). Ludhiana, India.Google Scholar
Snedecor, GW and Cochran, WG (1956) Statistical Methods. Ames: Iowa State.Google Scholar
Song, CY, Park, SC, Lee, JS, Kim, YA and Kim, JH (2004) Correlation and combining ability of plant growth and flowering in F1 hybrids by diallel cross in Lilium formolongi and L. formosanum. Korean Journal of Horticultural Science and Technology 22, 107113.Google Scholar
Sreevalli, Y, Kulkarni, RN and Baskaran, K (2002) Inheritance of flower color in periwinkle: orange-red corolla and white eye. Journal of Heredity 93, 112.CrossRefGoogle ScholarPubMed
Stearn, WT (1975) A synopsis of the genus Catharanthus (Apocynaceae). In Taylor, RW and Farnsworth, NR (eds), The Catharanthus Alkaloids. Botany, Chemistry, Pharmacology, and Clinical Use. New York: Marcel Dekkar, pp. 944.Google Scholar
Valencia, E, Mendez, M, Saavedra, N and Maestre, FT (2016) Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species. Perspectives in Plant Ecology, Evolution and Systematics 21, 3140.CrossRefGoogle ScholarPubMed
Van, BMA (1996) Revision of Catharanthus G. Don series of revisions of Apocynaceae XLI. Wageningen. Agriculture University Papers 96, 945.Google Scholar
Wright, S (1921) Correlation and causation. Journal of Agriculture Research 20, 202209.Google Scholar
Supplementary material: File

Ravikumar and Dhatt supplementary material

Ravikumar and Dhatt supplementary material
Download Ravikumar and Dhatt supplementary material(File)
File 131.2 KB