Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T23:05:11.915Z Has data issue: false hasContentIssue false

Evaluation of molecular variability in germplasm of vanilla (Vanilla planifolia G. Jackson in Andrews) in Southeast Mexico: implications for genetic improvement and conservation

Published online by Cambridge University Press:  09 February 2016

Alma Laura Ramos-Castellá
Affiliation:
Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Campus para la Cultura, las Artes y el Deporte, Av. de las Culturas Veracruzanas No. 101, Colonia Emiliano Zapata, C.P. 91090 Xalapa, Veracruz, Mexico
Lourdes G. Iglesias-Andreu*
Affiliation:
Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Campus para la Cultura, las Artes y el Deporte, Av. de las Culturas Veracruzanas No. 101, Colonia Emiliano Zapata, C.P. 91090 Xalapa, Veracruz, Mexico
Jaime Martínez-Castillo
Affiliation:
Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán, Mexico
Matilde Ortíz-García
Affiliation:
Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán, Mexico
Rubén Humberto Andueza-Noh
Affiliation:
División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Yucatán, Antigua Carretera Mérida-Motul Km. 16.3. C.P. 97345, Yucatán, Mexico
Pablo Octavio-Aguilar
Affiliation:
Laboratorio de Genética, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5. Ciudad del Conocimiento Col. Carboneras, Mineral de la Reforma, C.P. 42184, Pachuca, Hidalgo, Mexico
Mauricio Luna-Rodríguez
Affiliation:
Laboratorio de Alta Tecnología de Xalapa S.C., Universidad Veracruzana, Calle Médicos Núm. 5, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
*
*Corresponding author. E-mail: [email protected]

Abstract

Molecular variability of vanilla (Vanilla planifolia) and three wild species was assessed to explore the possible sources of variation that can be used for crop improvement. A total of 154 ISSR loci were analysed by the UPGMA, assignment tests of individuals (STRUCTURE) and indices of genetic diversity. The assignment tests were done at two levels: first considering the four species and then only the accessions of V. planifolia. The molecular analysis indicated 99.3% polymorphism among all species and 70.45% within V. planifolia. The UPGMA showed the separation of these four species into three groups and grouped V. planifolia accessions into three subgroups. The more genetically differentiated accessions were of the Rayada morphotype and a wild accession was from Oaxaca, followed by a wild accession from Quintana Roo; all the commercial accessions of V. planifolia (Mansa morphotype) were grouped together. The STRUCTURE analysis differentiated between V. planifolia and the three wild species, and among the accessions of the Mansa and Rayada morphotypes and the wild accessions. The STRUCTURE analysis also indicated the presence of mixed individuals. These results are of great importance since the accessions of V. planifolia that are genetically more differentiated are the most threatened due to the scarcity of these individuals, the destruction of habitat and replacement by the commercial morphotype. These individuals should be salvaged and used to expand the genetic background of vanilla.

Type
Research Article
Copyright
Copyright © NIAB 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bello-Bello, JJ, García-García, GG and Iglesias Andreu, L (2015) Conservación de vainilla (Vanilla planifolia Jacks.) bajo condiciones de lento crecimiento in vitro . Revista Fitotecnia Mexicana 38: 165171.Google Scholar
Bory, S, Grisoni, M, Duval, MF and Besse, P (2008a) Biodiversity and preservation of vanilla: present state of knowledge. Genetic Resources and Crop Evolution 55: 551571.Google Scholar
Bory, S, Lubinsky, P, Risterucci, AM, Noyer, JL, Grisoni, M, Duval, MF and Besse, P (2008b) Patterns of introduction and diversification of Vanilla planifolia (Orchidaceae) in Reunion Island (Indian Ocean). American Journal of Botany 95: 805815.Google Scholar
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 1115.Google Scholar
Duval, MF, Bory, S, Andrzejewski, S, Grisoni, M, Besse, P, Causse, S, Charon, C, Dron, M, Odoux, E and Wong, M (2006) Diversité génétique des vanilliers dans leurs zones de dispersion secondaire. Les Actes du BRG 6: 181196.Google Scholar
Earl, DA and VonHoldt, VM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources 4: 359361.Google Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 26112620.Google Scholar
Fang, DQ and Roose, ML (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical Applied Genetics 95: 408417.Google Scholar
Gilbert, JE, Lewis, RV, Wilkinson, MJ and Caligari, PDS (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theoretical Applied Genetics 98: 11251131.Google Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 19.Google Scholar
Hernández, J (2011) Paquete tecnológico vainilla (Vanilla planifolia Jackson). Establecimiento y mantenimiento. Programa Estratégico para el desarrollo Rural Sustentable de la Región Sur-Sureste: Trópico Húmedo. Tlapacoyan, Mexico: INIFAP.Google Scholar
Kizhakkayil, J and Sasikumar, B (2010) Genetic diversity analysis of ginger (Zingiber officinale Rosc.) germplasm based on RAPD and ISSR markers. Scientia Horticulturae 125: 7376.Google Scholar
Krushnamurthy, A, Shyamala, BN and Madhava Naidu, M (2013) Vanilla – its science of cultivation, curing, chemistry, and nutraceutical properties. Critical Reviews in Food Science and Nutrition 53: 12501276.Google Scholar
Lubinsky, P, Bory, S, Hernández, J, Seung-Chul, K and Gómez-Pompa, A (2008a) Origins and dispersal of cultivated vanilla (Vanilla planifolia Jacks. [Orchidaceae]). Economic Botany 62: 127138.Google Scholar
Lubinsky, P, Cameron, KM, Molina, MC, Wong, M, Lepers-Andrzejewski, S, Gómez-Pompa, A and Seung-Chul, K (2008b) Neotropical roots of a Polynesian spice: the hybrid origin on Tahitian vanilla, Vanilla tahitensis (Orchidaceae). American Journal of Botany 95: 10401047.Google Scholar
Martínez-Castillo, J (2005) Diversidad intraespecífica de Phaseolus lunatus L. e intensificación de la agricultura tradicional en la Península de Yucatán, México. PhD Thesis, Centro de Investigación Científica de Yucatán..Google Scholar
Martínez-Castillo, J, Colunga-García Marín, P and Zizumbo-Villarreal, D (2008) Genetic erosion and in situ conservation of Lima bean (Phaseolus lunatus L.) landraces in its Mesoamerican diversity center. Genetic Resources and Crop Evolution 55: 10651077.Google Scholar
Minoo, D, Jayakumar, VN, Veena, SS, Vimala, J, Basha, A, Saji, KV, Nirmal Babu, K and Peter, KV (2008) Genetic variations and interrelationships in Vanilla planifolia and few related species as expressed by RAPD polymorphism. Genetic Resources and Crop Evolution 55: 459470.Google Scholar
Portéres, R (1954) Le genre Vanilla et ses espéces. In: Lechevalier, P (ed.) Le vanillier et la vanille dans le monde. Paris: Éditions Paul Lechevalier, pp. 94290.Google Scholar
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945959.Google Scholar
Ramos-Castellá, AL, Iglesias-Andreu, LG, Bello-Bello, J and Lee-Espinosa, H (2014) Improved propagation of vanilla (Vanilla planifolia Jacks. Ex Andrews) using a temporary immersion system. In Vitro Cellular & Developmental Biology – Plant 50: 576581.Google Scholar
Reddy, MP, Sarla, N and Siddiq, EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 917.Google Scholar
Schluter, PM, Soto Arenas, AM and Harris, SA (2007) Genetic variation in Vanilla planifolia (Orchidaceae). Economic Botany 61: 328336.Google Scholar
Soto Arenas, MA (1999) Fitogeografía y recursos genéticos de las vainillas de México. Available at http://www.conabio.gob.mx/institucion/proyectos/resultados/InfJ101.pdf (accessed 12 June 2012)..Google Scholar
Soto Arenas, MA and Cribb, P (2010) New infrageneric classification and synopsis of the genus Vanilla Plum. ex Mill. (Orchidaceae: Vanillinae). Lankesteriana 9: 355398.Google Scholar
Soto Arenas, MA and Dressler, RL (2010) A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their ITS region of the nuclear ribosomal DNA. Lankesteriana 9: 285354.Google Scholar
Verma, PC, Chakrabarty, D, Jena, SN, Mishra, DK, Singh, PK, Sawant, SV and Tuli, R (2009) The extent of genetic diversity among Vanilla species: comparative results for RAPD and ISSR. Industrial Crops and Products 29: 581589.Google Scholar
Yeh, FC and Boyle, TJB (1999) Popgene Version 1.31. Microsoft Windows-Based Freeware for Population Analysis. Edmonton: University of Alberta and Centre for International Forestry Research.Google Scholar
Zietkiewicz, E, Rafalski, A and Labuda, D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176183.Google Scholar
Zuo, L, Xiuqun, L, Wahiti, R, Juntawong, N, Zhou, M and Chen, L (2010) Genetic diversity and classification of Nelumbo germplasm of different origins by RAPD and ISSR analysis. Scientia Horticulturae 125: 724732.Google Scholar