Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T04:46:37.323Z Has data issue: false hasContentIssue false

Diversity and genetic structure of Astronium concinnum Schott ex Spreng. in conservation units

Published online by Cambridge University Press:  19 January 2022

Alessandra Abreu Rodrigues Vieira
Affiliation:
Universidade Federal do Espírito Santo/Ufes, Alto Universitário, S/No, 29500-000, Alegre, ES, Brazil
Lucimara Cruz de Souza
Affiliation:
Universidade Federal do Espírito Santo/Ufes, Alto Universitário, S/No, 29500-000, Alegre, ES, Brazil
Adelson Lemes da Silva Júnior*
Affiliation:
Universidade Federal do Espírito Santo/Ufes, Alto Universitário, S/No, 29500-000, Alegre, ES, Brazil
Bruno Quinelato Alves
Affiliation:
Universidade Federal do Espírito Santo/Ufes, Alto Universitário, S/No, 29500-000, Alegre, ES, Brazil
Fábio Demolinari de Miranda
Affiliation:
Universidade Federal do Espírito Santo/Ufes, Alto Universitário, S/No, 29500-000, Alegre, ES, Brazil
Sarah Ola Moreira
Affiliation:
Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural/Incaper, BR 101N, km 151, S/No, 29915-140, Linhares, ES, Brazil
Marcos Vinicius Winckler Caldeira
Affiliation:
Universidade Federal do Espírito Santo/Ufes, Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, ES, Brazil
*
Author for correspondence: Adelson Lemes da Silva Júnior, E-mail: [email protected]

Abstract

Astronium concinnum Schott ex Spreng. (Anacardiaceae) is a species used in civil construction, naval, luxury furniture, in addition to the potential for recovery and restoration of habitats. The objective of this work was to characterize the diversity and genetic structure of the A. concinnum in the Conservation Units, National Forest of Pacotuba and Private Natural Heritage Reserve of Cafundó, located in the south of the state of Espírito Santo. Eight ISSR primers were used, which produced 121 DNA fragments and 73.55% polymorphism. In the analysis of genetic dissimilarity, seven distinct groups were identified, with the majority of individuals (from both Conservation Units) being brought together into a single group. The genetic diversity of Nei (H*) and the Shannon index (I*), provided values for the species of 0.312 and 0.473, respectively, indicating the genetic diversity conserved in the species and its potential use for collecting genetically diversified seeds. The analysis of molecular variance revealed that most of the diversity (92.54%) is distributed within populations and the value of gene flow (Nm = 10.629) indicates the high rate of genetic exchange between Conservation Units. The results of the genetic structuring indicated the division of individuals into three genetic groups (K = 3), however, it was possible to observe a mixture of genetic material with the sharing of alleles between the three groups. The results indicate that A. concinnum trees maintain genetic diversity for their maintenance. In addition, the potential of the analysed individuals was certified as future matrixes for seed collection.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, R, Quesada, M, Ashworth, L, Herrerias-Diego, Y and Lobo, J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17, 51775188.CrossRefGoogle ScholarPubMed
Aguilar, LG, López, AMS, Aceitun, CB, Ávila, JAC, Guerreiro, JAL and Quesada, R (2016) A DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking 14, 264270.CrossRefGoogle Scholar
Alvares, CA, Stape, JL, Sentelhas, PC, Moraes Gonçalves, JL and Sparovek, G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Auguie, B and Antonov, A (2017) Miscellaneous functions for ‘Grid’ graphics. R package version 2.3. Available at https://cran.r-project.org/web/packages/gridExtra/gridExtra (Accessed 24 April 2020).Google Scholar
Bocanegra-González, KT and Guillemin, ML (2018) Guidelines for the restoration of the tropical timber tree Anacardium excelsum: first input from genetic data. Tree Genetics & Genomes 14, 159.CrossRefGoogle Scholar
Brandão, MM, Vieira, FA and Carvalho, D (2011) Estrutura Genética em Microescala Espacial de Myrcia splendens (Myrtaceae). Revista Árvore 35, 957964.CrossRefGoogle Scholar
Cortelete, MA, Silva Júnior, AL, Pereira, MLS, Miranda, FD and Caldeira, MVW (2021) Molecular characterization as strategy for ex situ conservation of Anadenanthera peregrina (L.) Speg. Scientia Forestalis 49, e3443.CrossRefGoogle Scholar
Cruz, CD (2016) Genes software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum 38, 547552.CrossRefGoogle Scholar
Daniel, O, Reis, MGF, Maestri, M, Reis, GG and Regazzi, AJ (1987) Determinação dos padrões de disseminação de Astronium concinnum Schot (Gonçalo-alves). Revista Árvore 11, 119131.Google Scholar
Daniel, O, Reis, MGF, Maestri, M and Reis, GG (1988) Germinação de sementes e sobrevivência inicial de plântulas de Astronium concinnum Schott (Gonçalo-alves) em condições naturais. Revista Árvore 12, 196208.Google Scholar
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 1315.Google Scholar
Earl, DA and Vonholdt, BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources 4, 359361.CrossRefGoogle Scholar
England, PR, Usher, AV, Whelan, RJ and Ayre, DJ (2002) Microsatellite diversity and genetic structure of fragmented populations of the rare, fire-dependent shrub Grevillea macleayana. Molecular Ecology 11, 967977.CrossRefGoogle ScholarPubMed
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Excoffier, L and Lischer, HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Fajardo, CG, Costa, DFD, Chagas, KPTD and Vieira, FDA (2018) Genetic diversity in natural populations of Hancornia speciosa Gomes: implications for conservation of genetic resources. Ciência e Agrotecnologia 42, 623630.CrossRefGoogle Scholar
Ferreira, CBB, Lopes, MTG, Lopes, R, Cunha, RNVD, Moreira, DA, Barros, WS and Matiello, RR (2012) Diversidade genética molecular de progênies de dendezeiro. Pesquisa Agropecuária Brasileira 47, 378384.CrossRefGoogle Scholar
Fischer, J, Stott, J and Law, BS (2010) The disproportionate value of scattered trees. Biological Conservation 143, 15641567.CrossRefGoogle Scholar
Galili, T, Benjamini, Y, Simpson, G, Jefferis, G, Gallota, M, Renaudie, J, Hornik, K, Ligges, U, Spiess, A, Horvath, S, Langfelder, P, Loo, MVD, Vries, A, Gu, Z, Ma, JGK, Hummel, M, Clark, C, Graybuck, L, Ho, B, Perreault, S, Hennig, C and Bradley, D (2020) Extending ‘dendrogram’ functionality in R. R package version 1.13.4. 2020. Available at https://cran.r-project.org/web/packages/dendextend/dendextend (Accessed 24 April 2020).Google Scholar
Ghazalli, MN, Yunus, MF and Mohammad, AL (2015) Assessment of genetic relationships within Bouea (Anacardiaceae) accessions in Peninsular Malaysia using inter simple sequence repeats (ISSR) markers. African Journal of Biotechnology 14, 7685.Google Scholar
Grover, A and Sharma, PC (2016) Development and use of molecular markers: past and present. Critical Reviews in Biotechnology 36, 290302.CrossRefGoogle ScholarPubMed
Haddad, NM, Brudvig, LA, Clobert, J, Davies, KF, Gonzalez, A, Holt, RD, Lovejoy, TE, Sexton, JO, Austin, MP, Collins, CD, Cook, WM, Damschen, EI, Ewe, RM, Foster, BL, Jenkins, CN, King, AJ, Laurance, WF, Levey, DJ, Margules, CR, Melbourne, BA, Nicholls, AO, Orrock, JL, Canção, DX and Townshend, JR (2015) Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1, 110.CrossRefGoogle ScholarPubMed
Hamrick, JL (2012) Tropical breeding systems: one and done? Heredity 109, 330331.CrossRefGoogle ScholarPubMed
ICMBIO (2011) Plano de Manejo da Floresta Nacional de Pacotuba, localizada no estado do Espirito Santo. Vila Velha: Instituto Chico Mendes De Conservação Da Biodiversidade.Google Scholar
Kageyama, PY, Sebbenn, AM, Ribas, LA, Gandara, FB, Castellen, M, Perecim, MB and Vencovsky, R (2003) Diversidade genética em espécies arbóreas tropicais de diferentes estágios sucessionais por marcadores genéticos. Scientia Forestalis 64, 93107.Google Scholar
Kassambara, A (2020) ‘ggplot2’ Based publication ready plots. R package version 0.4.0. 2020. Available at https://cran.r-project.org/web/packages/ggpubr/ggpubr (Accessed 24 April 2020).Google Scholar
Kassambara, A and Mundt, F (2020) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.5. 2017. Available at https://CRAN.R-project.org/package=factoextra (Accessed 24 April 2020).Google Scholar
Labdelli, A, De La Herrán, R, Arafeh, R, Resentini, F, Trainotti, L, Halis, Y, Adda, A and Merah, O (2020) Genetic variation in damaged populations of Pistacia Atlantica Desf. Plants 9, 1541.CrossRefGoogle ScholarPubMed
Lewontin, RC (1972) The apportionment of human diversity. Evolutionary Biology 6, 381398.Google Scholar
Lorenzi, H (2002) Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. Nova Odessa: Instituto Plantarum, p. 368.Google Scholar
Luz, CLS, Mitchell, JD, Pirani, JR and Pell, SK (2020) Anacardiaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Available at http://reflora.jbrj.gov.br/reflora/floradobrasil/FB4383 (Accessed 6 April 2020).Google Scholar
Maechler, M, Rousseeuw, P, Struyf, A, Hubert, M, Hornik, K, Studer, M, Roudier, P, Gonzalez, J, Kozlowski, K, Schubert, E, Murphy, K (2019) Finding groups in data: cluster analysis extended Rousseeuw et al R package version 2.1.0. 2019. Available at https://cran.r-project.org/web/packages/cluster/cluster (Accessed 24 April 2020).Google Scholar
Maheswarappa, V, Vasudeva, R, Hegde, R and Ravikanth, G (2019) ISSR Analysis of genetic diversity in Acrocarpus fraxinifolius from three landscape elements of transition forest belt of Kodagu district, Karnataka, India. International Journal of Current Microbiology and Applied Sciences 8, 16111624.CrossRefGoogle Scholar
Martins, K, Kimura, RK, Francisconi, AF, Gezan, S, Kainer, K and Christianini, AV (2016) The role of very small fragments in conserving genetic diversity of a common tree in a hyper fragmented Brazilian Atlantic forest landscape. Conservation Genetics 17, 509520.CrossRefGoogle Scholar
Mojema, R (1977) Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal 20, 359363.CrossRefGoogle Scholar
Motta, JS, Teixeira, MLM and Sebbenn, AM (2004) Autocorrelação espacial em população natural de Terminalia argentea Mart et Succ. no cerrado de Selvíria, MS. Scientia Forestalis 66, 9499.Google Scholar
Ng, WL and Tan, SG (2015) Inter-Simple Sequence Repeat (ISSR) markers. ASM Science Journal 9, 3039.Google Scholar
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, Mcglinn, D, Minchin, PR, O'hara, RB, Simpson, GL, Solymos, P, Stevens, MHH, Szoecs, E and Wagner, E (2018) Vegan: community ecology package. R package version 2.4-5. 2018. Available at https://CRAN.R-project.org/package=vegan (Accessed 24 April 2020).Google Scholar
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Rajalakshmi, R, Rajalakshmi, S and Parida, A (2019) Genetic diversity, population structure and correlation study in Moringa oleifera Lam. using ISSR and SRAP markers. Proceedings of the National Academy of Sciences 89, 13611371.Google Scholar
Ramalho, AB, Rossi, AAB, Dardengo, JFE, Zortéa, KÉM, Tiago, AV and Martins, KC (2016) Diversidade genética entre genótipos de Bertholletia excelsa por meio de marcadores moleculares ISSR. Floresta 46, 207214.CrossRefGoogle Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Schmidt, IB, De Urzedo, DI, Piña-Rodrigues, FCM, Vieira, DLM, De Rezende, GM, Sampaio, AB and Junqueira, RGP (2019) Community-based native seed production for restoration in Brazil–the role of science and policy. Plant Biology 21, 389397.CrossRefGoogle ScholarPubMed
Sebbenn, AM (2002) Número de árvores matrizes e conceitos genéticos na coleta de sementes para reflorestamentos com espécies nativas. Revista do Instituto Florestal 14, 115132.Google Scholar
Silva, B, Rossi, AAB, Tiago, AV, Schmitt, KFM, Dardengo, JFE and Souza, SAM (2017) Genetic diversity of Cajazeira (Spondias mombin L.) in three geographic regions. Genetics and Molecular Research 16, 111.Google Scholar
Silva Júnior, AL, Souza, LC, Pereira, AG, Caldeira, MVW and Miranda, FD (2017) Genetic diversity of Schizolobium parahyba var. amazonicum (Huber ex. Ducke) Barneby, in a forest area in Brazil. Genetics and Molecular Research 16, gmr16039774.Google Scholar
Souza, LC, Silva Júnior, AL, Miranda, FD, Souza, MC, Kunz, SH and Pereira, AG (2018) Validação do marcador molecular ISSR para detecção de diversidade genética em Plathymenia reticulata Benth. Revista Brasileira de Ciências Agrárias 13, 16.Google Scholar
Wilke, CO (2019) Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.0.0. 2019. Available at https://cran.r-project.org/web/packages/cowplot/cowplot (Accessed 24 April 2020).Google Scholar
Wright, S (1951) The genetical structure of populations. Annals of Eugenic 15, 395420.Google ScholarPubMed
Wright, S (1978) Evolution and Genetics of Populations. Chicago: The University of Chicago Press, p. 465.Google Scholar
Yeh, FC and Boyle, TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 29, 157163.Google Scholar
Yulita, KS, Atikah, TD, Wardani, W and Sulita, (2020) Unraveling genetic variations of Dalbergia latifolia (Fabaceae) from Yogyakarta and Lombok Island, Indonesia. Biodiversitas: Journal of Biological Diversity 21, 833841.CrossRefGoogle Scholar