Article contents
Assessment of recent bottlenecks and estimation of effective population size in the Ethiopian wild sorghum using simple sequence repeat allele diversity and mutation models
Published online by Cambridge University Press: 02 February 2015
Abstract
Since the immediate wild relatives of Sorghum bicolor (L.) Moench are indigenous to Ethiopia, studying their population biology is timely for undertaking conservation measures. A study was conducted to investigate the occurrence of population bottlenecks and to estimate the long-term effective population size (Ne) in wild relatives of sorghum. For this, 40 samples of wild sorghum were collected from two remotely located populations that were allopatric to the cultivated sorghum. The presence of bottlenecks was investigated using heterozygosity excess/deficiency, mode shift and allelic diversity based on nine polymorphic simple sequence repeat (SSR) loci. We also estimated the Ne of the studied populations using two different methods employing SSR mutation models. The expected heterozygosity was found to be 0.41 and 0.71 and allelic richness was 3.0 and 4.9, in Awash and Gibe populations, respectively. Neither the heterozygosity excess nor the mode-shift methods detected signatures of bottlenecks in the studied populations. The effective size of the two wild sorghum populations studied also showed no risk of population reduction in these regions of Ethiopia. Therefore, these allopatric wild sorghum populations can survive by occupying patches by the roadsides and fences, areas within abandoned farm lands, forests, etc., which shows that their wild characteristics of adaptation have been adequate for them to survive from extinction despite extensive deforestation of their habitat for modern agriculture and frequent grazing by livestock. However, this does not guarantee the survival of these species for the future and ex situ conservation measures or policies could help maintain their diversity.
- Type
- Research Article
- Information
- Copyright
- Copyright © NIAB 2015
References
- 3
- Cited by