Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T23:42:31.411Z Has data issue: false hasContentIssue false

An overview of peanut and its wild relatives

Published online by Cambridge University Press:  14 January 2011

David J. Bertioli*
Affiliation:
University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Brasília-DF, Brazil Catholic University of Brasília, Biotechnology and Genomic Sciences, Brasília-DF, Brazil
Guillermo Seijo
Affiliation:
Laboratorio de Citogenética y Evolución, Instituto de Botánica del Nordeste, Corrientes, Argentina
Fabio O. Freitas
Affiliation:
Embrapa Genetic Resources and Biotechnology, PqEB Final W3 Norte, Brasília-DF, Brazil
José F. M. Valls
Affiliation:
Embrapa Genetic Resources and Biotechnology, PqEB Final W3 Norte, Brasília-DF, Brazil
Soraya C. M. Leal-Bertioli
Affiliation:
Embrapa Genetic Resources and Biotechnology, PqEB Final W3 Norte, Brasília-DF, Brazil
Marcio C. Moretzsohn
Affiliation:
Embrapa Genetic Resources and Biotechnology, PqEB Final W3 Norte, Brasília-DF, Brazil
*
*Corresponding author. E-mail: [email protected]

Abstract

The legume Arachis hypogaea, commonly known as peanut or groundnut, is a very important food crop throughout the tropics and sub-tropics. The genus is endemic to South America being mostly associated with the savannah-like Cerrado. All species in the genus are unusual among legumes in that they produce their fruit below the ground. This profoundly influences their biology and natural distributions. The species occur in diverse habitats including grasslands, open patches of forest and even in temporarily flooded areas. Based on a number of criteria, including morphology and sexual compatibilities, the 80 described species are arranged in nine infrageneric taxonomic sections. While most wild species are diploid, cultivated peanut is a tetraploid. It is of recent origin and has an AABB-type genome. The most probable ancestral species are Arachis duranensis and Arachis ipaënsis, which contributed the A and B genome components, respectively. Although cultivated peanut is tetraploid, genetically it behaves as a diploid, the A and B chromosomes only rarely pairing during meiosis. Although morphologically variable, cultivated peanut has a very narrow genetic base. For some traits, such as disease and pest resistance, this has been a fundamental limitation to crop improvement using only cultivated germplasm. Transfer of some wild resistance genes to cultivated peanut has been achieved, for instance, the gene for resistance to root-knot nematode. However, a wider use of wild species in breeding has been hampered by ploidy and sexual incompatibility barriers, by linkage drag, and historically, by a lack of the tools needed to conveniently confirm hybrid identities and track introgressed chromosomal segments. In recent years, improved knowledge of species relationships has been gained by more detailed cytogenetic studies and molecular phylogenies. This knowledge, together with new tools for genetic and genomic analysis, will help in the more efficient use of peanut's genetic resources in crop improvement.

Type
Research Article
Copyright
Copyright © NIAB 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, NP (2005) A review and survey of Basicarpy, Geocarpy, and Amphicarpy in the African and Madagascan flora. Annals of the Missouri Botanical Garden 92: 445462.Google Scholar
Barkley, NA, Dean, RE, Pittman, RN, Wang, ML, Holbrook, CC and Pederson, GA (2007) Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genetics Research 89: 93106.CrossRefGoogle ScholarPubMed
Bechara, MD, Moretzsohn, MC, Palmieri, DA, Monteiro, JP, Bacci Júnior, M, Valls, JFM, Lopes, CR and Gimenes, MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences. BMC Plant Biology 10: 255.CrossRefGoogle ScholarPubMed
Bertioli, DJ, Moretzsohn, MC, Madsen, LH, Sandal, N, Leal-Bertioli, SCM, Guimarães, PM, Hougaard, BK, Fredslund, J, Schauser, L, Nielsen, AM, Sato, S, Tabata, S, Cannon, SB and Stougaard, J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10: 45.CrossRefGoogle ScholarPubMed
Bonavia, D (1982) Precerámico peruano, Los Gavilanes, oasis en la historia del hombre. Lima: Corporación Financiera de Desarrollo S.A. COFIDE e Instituto Arqueológico Alemán.Google Scholar
Bravo, JP, Hoshino, AA, Angelici, CMLCD, Lopes, CR and Gimenes, MA (2006) Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genetics and Molecular Biology 29: 516524.CrossRefGoogle Scholar
Budiman, MA, Jones, JIT, Citek, RW, Warek, U, Bedell, JA and Knapp, SJ (2006) Methylation-filtered and shotgun genomic sequences for diploid and tetraploid peanut taxa. GenBank Available at http://www.ncbi.nlm.nih.gov/.Google Scholar
Burow, MD, Simpson, CE, Starr, JL and Paterson, AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159: 823837.CrossRefGoogle ScholarPubMed
Cabrera, AL and Willink, A (1973) Biogeografía de América Latina. Serie Biología, Monografía. vol. 13. Washington, DC: Organización de Estados Americanos, p. 117.Google Scholar
Church, GT, Simpson, CE, Burow, MD, Paterson, AH and Starr, JL (2000) Use of RFLP markers for identification of individuals homozygous for resistance to Meloidogyne arenaria in peanut. Nematology 2: 575580.CrossRefGoogle Scholar
Cuc, LM, Mace, ES, Crouch, JH, Quang, VD, Long, TD and Varshney, RK (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L.). BMC Plant Biology 8: 55.CrossRefGoogle Scholar
Cunha, FB, Nobile, PM, Hoshino, AA, Moretzsohn, MC, Lopes, CR and Gimenes, MA (2008) Genetic relationships among Arachis hypogaea L. (AABB) and diploid Arachis species with AA and BB genomes. Genetic Resources and Crop Evolution 55: 1520.CrossRefGoogle Scholar
Dwivedi, SL, Gurtu, S, Chandra, S, Yuejin, W and Nigam, SN (2001) Assessment of genetic diversity among selected groundnut germplasm. 1: RAPD analysis. Plant Breeding 120: 345349.CrossRefGoogle Scholar
FAOSTAT(2008) Available at http://faostat.fao.org/.Google Scholar
Fávero, AP, Simpson, CE, Valls, JFM and Vello, NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Science 46: 15461552.CrossRefGoogle Scholar
Ferguson, ME, Bramel, PJ and Chandra, S (2004a) Gene diversity among botanical varieties in peanut (Arachis hypogaea L.). Crop Science 44: 18471854.CrossRefGoogle Scholar
Ferguson, ME, Burow, MD, Schulze, SR, Bramel, PJ, Paterson, AH, Kresovich, S and Mitchell, S (2004b) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theoretical and Applied Genetics 108: 10641070.CrossRefGoogle ScholarPubMed
Fernández, A and Krapovickas, A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8: 187200.CrossRefGoogle Scholar
Foncéka, D, Hodo-Abalo, T, Rivallan, R, Faye, I, Sall, MN, Ndoye, O, Fávero, AP, Bertioli, DJ, Glaszmann, JC, Courtois, B and Rami, JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biology 9: 103.CrossRefGoogle ScholarPubMed
Freitas, FO, Moretzsohn, MC and Valls, JFM (2007) Genetic variability of Brazilian Indian landraces of Arachis hypogaea L. Genetics and Molecular Research 6: 675684.Google ScholarPubMed
Garcia, GM, Stalker, HT and Kochert, G (1995) Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. Genome 38: 166176.CrossRefGoogle ScholarPubMed
Garcia, GM, Stalker, HT, Shroeder, E and Kochert, G (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii to A. hypogaea. Genome 39: 836845.CrossRefGoogle Scholar
Gimenes, MA, Lopes, CR and Valls, JFM (2002) Genetic relationships among Arachis species based on AFLP. Genetics and Molecular Biology 25: 349353.CrossRefGoogle Scholar
Gimenes, MA, Hoshino, AA, Barbosa, AVG, Palmieri, DA and Lopes, CR (2007) Characterization and transferability of microsatellite markers of cultivated peanut (Arachis hypogaea). BMC Plant Biology 7: 9.CrossRefGoogle ScholarPubMed
Gregory, WC, Krapovickas, A and Gregory, MP (1980) Structure, variation, evolution and classification in Arachis. In: Summerfield, RT and Bunting, AH (eds) Advances in Legume Science. Kew: Royal Botanic Gardens, pp. 469481.Google Scholar
Grieshammer, U and Wynne, JC (1990) Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Science 17: 7275.CrossRefGoogle Scholar
Guo, BZ, Chen, X, Dang, P, Scully, BT, Liang, X, Holbrook, CC, Yu, J and Culbreath, AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Developmental Biology 8: 12.CrossRefGoogle ScholarPubMed
Halward, TM, Stalker, HT, Larue, EA and Kochert, G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34: 10131020.CrossRefGoogle Scholar
Halward, T, Stalker, HT, Larue, EA and Kochert, G (1992) Use of single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Molecular Biology 18: 315325.CrossRefGoogle ScholarPubMed
He, G and Prakash, CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97: 143149.CrossRefGoogle Scholar
He, G and Prakash, CS (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genetic Resources and Crop Evolution 48: 347352.CrossRefGoogle Scholar
He, G, Meng, R, Newman, M, Gao, G, Pittman, RN and Prakash, CS (2003) Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biology 3: 3.CrossRefGoogle Scholar
He, G, Meng, R, Gao, H, Guo, B, Gao, G, Newman, M, Pittman, RN and Prakash, CS (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142: 131136.CrossRefGoogle Scholar
Herselman, L (2003) Genetic variation among Southern African cultivated peanut (A. hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133: 319327.CrossRefGoogle Scholar
Hilu, KW and Stalker, HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): evidence from RAPDs. Plant Systematics and Evolution 198: 167178.CrossRefGoogle Scholar
Holbrook, CC, Anderson, WF and Pittman, RN (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Science 33: 859861.CrossRefGoogle Scholar
Hopkins, MS, Casa, AM, Wang, T, Mitchell, SE, Dean, R, Kochert, GD and Kresovich, S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Science 39: 12431247.CrossRefGoogle Scholar
Hougaard, BK, Madsen, LH, Sandal, N, Moretzsohn, MC, Fredslund, J, Schauser, L, Nielsen, AM, Rohde, T, Sato, S, Tabata, S, Bertioli, DJ and Stougaard, J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179: 22992312.CrossRefGoogle ScholarPubMed
Husted, L (1936) Cytological studies on the peanut, Arachis. II. Chromosome number, morphology and behavior, and their application to the problem of the cultivated forms. Cytologia 7: 396423.CrossRefGoogle Scholar
Jiang, H, Liao, B, Ren, X, Lei, Y, Mace, E, Fu, T and Crouch, JH (2007) Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. Journal of Genetics and Genomics 34: 544554.CrossRefGoogle ScholarPubMed
Khedikar, YP, Gowda, MVC, Sarvamangala, C, Patgar, KV, Upadhyaya, HD and Varshney, RV (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics. DOI: 10.1007/s00122-010-1366-x (online first).CrossRefGoogle Scholar
Kochert, G, Halward, T, Branch, WD and Simpson, CE (1991) RFLP variability in peanut (Arachis hypogaea) cultivars and wild species. Theoretical and Applied Genetics 81: 565570.CrossRefGoogle ScholarPubMed
Kochert, G, Stalker, HT, Gimenes, M, Galgaro, L, Lopes, CR and Moore, K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). American Journal of Botany 83: 12821291.CrossRefGoogle Scholar
Koppolu, R, Upadhyaya, HD, Dwivedi, SL, Hoisington, DA and Varshney, RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biology 10: 15.CrossRefGoogle ScholarPubMed
Kottapalli, KR, Burow, MD, Burow, G, Burke, J and Puppala, N (2007) Molecular characterization of the U.S. peanut mini core collection using microsatellite markers. Crop Science 47: 17181727.CrossRefGoogle Scholar
Krapovickas, A (2004) Consideraciones prehistóricas sobre el origen del maní cultivado. Academia Nacional de Agronomía y Veterinaria 58: 320331.Google Scholar
Krapovickas, A and Gregory, WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8: 1186.CrossRefGoogle Scholar
Krapovickas, A and Gregory, WC (2007) Taxonomy of the genus Arachis (Leguminosae). Translated by DE Williams, CE Simpson. Bonplandia 16: 1205.CrossRefGoogle Scholar
Krapovickas, A, Vanni, RO, Pietrarelli, JR, Williams, DE and Simpson, CE (2009) Las Razas de Maní de Bolivia. Bonplandia 18: 95189.CrossRefGoogle Scholar
Krishna, TG and Mitra, R (1988) The probable genome donors to Arachis hypogaea L. based on arachin seed storage protein. Euphytica 37: 4752.CrossRefGoogle Scholar
Krishna, GK, Zhang, J, Burow, M, Pittman, RN, Delikostadinov, SG, Lu, Y and Puppala, N (2004) Genetic diversity analysis in Valencia peanut (Arachis hypogaea L.) using microsatellite markers. Celular and Molecular Biology Letters 9: 685697.Google ScholarPubMed
Lavia, GI (1996) Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9: 111120.CrossRefGoogle Scholar
Lavia, GI (1998) Karyotypes of Arachis palustris and A. praecox (Section Arachis), two species with basic chromosome number x = 9. Cytologia 63: 177181.CrossRefGoogle Scholar
Lavia, GI (1999) Caracterización cromosómica del germoplasma de maní. PhD Thesis, Universidad Nacional de Córdoba, Cordoba.Google Scholar
Lavia, GI, Ortiz, AM and Fernández, A (2009) Karyotypic studies in wild germoplasm of Arachis (Leguminosae). Genetic Resources and Crop Evolution 56: 755764.CrossRefGoogle Scholar
Leal-Bertioli, SCM, José, ACVF, Alves-Freitas, DMT, Moretzsohn, MC, Guimarães, PM, Nielen, S, Vidigal, BS, Pereira, RW, Pike, J, Fávero, AP, Parniske, M, Varshney, RK and Bertioli, DJ (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biology 9: 112.CrossRefGoogle ScholarPubMed
Leal-Bertioli, SCM, de Farias, MP, Silva, PIT, Guimarães, PM, Brasileiro, ACM, Bertioli, DJ and de Araujo, ACG (2010) Ultrastructure of the initial interaction of Puccinia arachidis and Cercosporidium personatum with leaves of Arachis hypogaea and Arachis stenosperma. Journal of Phytopathology (online first).Google Scholar
Leal-Bertioli, SCML (2010) Characterization of disease resistances in wild Arachis and introgression of wild genes in peanut (Arachis hypogaea) breeding. Vth International Congress on Legume Genetics and Genomics, Asilomar Conference Grounds, Pacific Grove, California, July 2–8.Google Scholar
Lewis, G, Schrire, B, Muackinder, B and Lock, M (eds) (2005) Legumes of the World. Kew: Royal Botanic Gardens.Google Scholar
Liang, X, Chen, X, Hong, Y, Liu, H, Zhou, G, Li, S and Guo, B (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biology 9: 35.CrossRefGoogle ScholarPubMed
Lu, J and Pickersgill, B (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L. – Leguminosae). Theoretical and Applied Genetics 85: 550560.CrossRefGoogle ScholarPubMed
Martins, W, de Sousa, D, Proite, K, Guimarães, P, Moretzsohn, M and Bertioli, DJ (2006) New softwares for automated microsatellite marker development. Nucleic Acids Research 34: e31.CrossRefGoogle ScholarPubMed
Meney, KA, Pate, JS and Dixon, KW (1990) Comparative morphology, anatomy, phenology and reproductive-biology of Alexgeorgea spp. (Restionaceae) from South-western Australia. Australian Journal of Botany 38: 523541.CrossRefGoogle Scholar
Milla, SR, Isleib, TG and Stalker, HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48: 111.CrossRefGoogle ScholarPubMed
Moretzsohn, MC, Hopkins, MS, Mitchell, SE, Kresovich, S, Valls, JFM and Ferreira, ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervaraible regions of the genome. BMC Plant Biology 4: 11.CrossRefGoogle ScholarPubMed
Moretzsohn, MC, Leoi, L, Proite, K, Guimarães, PM, Leal-Bertioli, SC, Gimenes, MA, Martins, WS, Valls, JFM, Grattapaglia, D and Bertioli, DJ (2005) A microsatellite-based gene-rich linkage map for the A-genome of Arachis (Fabaceae). Theoretical and Applied Genetics 111: 10601071.CrossRefGoogle Scholar
Moretzsohn, MC, Barbosa, AVG, Alves-Freitas, DMT, Teixeira, C, Leal-Bertioli, SCM, Guimarães, PM, Pereira, RW, Lopes, CR, Cavallari, MM, Valls, JFM, Bertioli, DJ and Gimenes, MA (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biology 9: 40.CrossRefGoogle Scholar
Nagy, E, Chu, Y, Guo, Y, Khanal, S, Tang, S, Li, Y, Dong, W, Timper, P, Taylor, C, Holbrook, CC, Beilinson, V, Nielsen, N, Stalker, TH and Knapp, SJ (2010) Recombination is Suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Molecular Breeding 26: 357370.CrossRefGoogle Scholar
Nielen, S, Campos-Fonseca, F, Leal-Bertioli, S, Guimarães, P, Seijo, JG, Town, C, Cook, D, Arrial, R and Bertioli, D (2010) FIDEL – a retrovirus-like retrotransposon and its distinct evolutionary histories in the A and B-genome components of cultivated peanut. Chromosome Research 18: 227246.CrossRefGoogle ScholarPubMed
Paik-Ro, OG, Smith, RL and Knauft, DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theoretical and Applied Genetics 84: 201208.CrossRefGoogle ScholarPubMed
Palmieri, DA, Hoshino, AA, Bravo, JP, Lopes, CR and Gimenes, MA (2002) Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus Arachis). Molecular Ecology Notes 2: 551553.CrossRefGoogle Scholar
Palmieri, DA, Bechara, MD, Curi, RA, Gimenes, MA and Lopes, CR (2005) Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Molecular Ecology Notes 5: 7779.CrossRefGoogle Scholar
Peñaloza, APS and Valls, JFM (1997) Contagem do número cromossômico em acessos de Arachis decora (Leguminosae). In: Veiga, RFA, Bovi, MLA, Betti, JA and Voltan, RBQ (eds) Simpósio Latino-Americano de Recursos Genéticos Vegetais, vol. 1, 1997, Campinas. Programas e Resumos. Campinas: IAC/Embrapa-Cenargen, p. 39.Google Scholar
Proite, K, Leal-Bertioli, SCM, Bertioli, DJ, Moretzsohn, MC, da Silva, FR, Martins, NF and Guimarães, PM (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biology 7: 7.CrossRefGoogle ScholarPubMed
Proite, K, Carneiro, R, Falcão, R, Gomes, A, Leal-Bertioli, S, Guimarães, P and Bertioli, D (2008) Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathology 57: 974980. DOI: 10.1111/j.1365-3059.2008.01861.x.CrossRefGoogle Scholar
Raina, SN, Rani, V, Kojima, T, Ogihara, Y, Singh, KP and Devarumath, RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44: 763772.CrossRefGoogle ScholarPubMed
Reddy, LJ, Nigam, SN, Moss, JP, Singh, AK, Subrahmanyam, P, McDonald, D and Reddy, AGS (1996) Registration of ICGV 86699 Peanut Germplasm line with multiple disease and insect resistance. Crop Science 36: 821.CrossRefGoogle Scholar
Ren, X, Huang, J, Liao, B, Zhang, X and Jiang, H (2010) Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genetic Resources and Crop Evolution 57: 903913.CrossRefGoogle Scholar
Robledo, G and Seijo, G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theoretical and Applied Genetics. DOI: 10.1111/j.1365-3059.2008.01861.x (online first).CrossRefGoogle Scholar
Robledo, G, Lavia, GI and Seijo, JG (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics 118: 12951307.CrossRefGoogle ScholarPubMed
Seijo, JG, Lavia, GI, Fernández, A, Krapovickas, A, Ducasse, D and Moscone, EA (2004) Physical mapping of 5S and 18S–25S rRNA genes evidences that Arachis duranensis and A. ipaënsis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). American Journal of Botany 91: 12941303.CrossRefGoogle Scholar
Seijo, JG, Lavia, GI, Fernández, A, Krapovickas, A, Ducasse, D, Bertioli, DJ and Moscone, EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea – Leguminosae) and its close relatives revealed by double GISH. American Journal of Botany 94: 19631971.CrossRefGoogle ScholarPubMed
Simpson, CE (1993) Registration of ‘TxAG-6’ and ‘TxAG-7’ peanut germplasm. Crop Science 33: 1418.CrossRefGoogle Scholar
Simpson, CE and Faries, MJ (2001) Advances in the characterization of diversity in section Arachis: archeological evidence, crossing results and their relationship in understanding the origin of Arachis hypogaea L. In: III SIRGEALC Simposio de recursos genéticos para a America Latina e Caribe. Londrinas: Instituto Agronómico do Paraná, pp. 103104.Google Scholar
Simpson, CE, Starr, JL, Church, GT, Burow, MD and Paterson, AH (2003) Registration of ‘NemaTAM’ Peanut. Crop Science 43: 1561.CrossRefGoogle Scholar
Simpson, CE, Starr, JL, Nelson, SC, Woodard, KE and Smith, OD (1993) Registration of TxAG6 and TxAG7 peanut germplasm. Crop Science 33: 1418.CrossRefGoogle Scholar
Singh, AK and Moss, JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 2. Chromosome complements of species in the section Arachis. Theoretical and Applied Genetics 61: 305314.CrossRefGoogle Scholar
Smartt, J (1990) The groundnut, Arachis hypogaea L. In: Smartt, J (ed.) Grain Legumes: Evolution and Genetic Resources. Cambridge: Cambridge University Press, pp. 3084.CrossRefGoogle Scholar
Smartt, J and Stalker, HT (1982) Speciation and cytogenetics in Arachis. In: Pattee, HE and Young, CT (eds) Peanut Science and Technology. Yoakum, TX: American Peanut Research and Education Society, pp. 2149.Google Scholar
Smartt, J, Gregory, WC and Gregory, MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27: 665675.CrossRefGoogle Scholar
Smith, BW (1950) Arachis hypogaea. Aerial flower and subterranean fruit. American Journal of Botany 37: 802815.CrossRefGoogle Scholar
Stalker, HT (1991) A new species in section Arachis of peanuts with a D genome. American Journal of Botany 78: 630637.CrossRefGoogle Scholar
Stalker, HT and Beute, MK (1993) Registration of four inter specific peanut germplasm lines resistant to Cercospora arachidicola. Crop Science 33: 1117.CrossRefGoogle Scholar
Stalker, HT, Wynne, JC and Company, M (1979) Variation in progenies of an Arachis hypogaea × diploid wild species hybrid. Euphytica 28: 675684.CrossRefGoogle Scholar
Subramanian, V, Gurtu, S and Nigam, SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43: 656660.CrossRefGoogle ScholarPubMed
Tallury, SP, Hilu, KW, Milla, SR, Friend, SA, Alsaghir, M, Stalker, HT and Quandt, D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theoretical and Applied Genetics 111: 12291237.CrossRefGoogle ScholarPubMed
Tang, R, Gao, G, He, L, Han, Z, Shan, S, Zhong, R, Zhou, C, Jiang, J, Li, Y and Zhuang, W (2007) Genetic diversity in cultivated groundnut based on SSR markers. Journal of Genetics and Genomics 34: 449459.CrossRefGoogle ScholarPubMed
Tang, R, Zhuang, W, Gao, G, He, L, Han, Z, Shan, S, Jiang, J and Li, Y (2008) Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agricultural Sciences in China 7: 405414.CrossRefGoogle Scholar
Valls, JFM and Simpson, CE (2005) New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia 14: 3564.CrossRefGoogle Scholar
Varshney, RK, Bertioli, DJ, Moretzsohn, MC, Vadez, V, Krishnamurthy, L, Aruna, R, Nigam, SN, Moss, BJ, Seetha, K, Ravi, K, He, G, Knapp, SJ and Hoisington, DA (2009a) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Biology 118. DOI: 10.1007/s00122-008-0933-x.Google ScholarPubMed
Varshney, RK, Close, TJ, Singh, NK, Hoisington, DA and Cook, DR (2009b) Orphan legume crops enter the genomics era! Current Opinion in Plant Biology 12: 19.CrossRefGoogle ScholarPubMed
Varshney, RK, Mahendar, T, Aruna, R, Nigam, SN, Neelima, K, Vadez, V and Hoisington, DA (2009c) High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers. Plant Breeding 128: 486494.CrossRefGoogle Scholar
Wang, CT, Yang, XD, Chen, DX, Yu, SL, Liu, GZ, Tang, YY and Xu, JZ (2007) Isolation of simple sequence repeats from groundnut. Electronic Journal of Biotechnology 10: 473480.CrossRefGoogle Scholar
Wang, CT, Wang, XZ, Tang, YY, Chen, DX, Cui, FG, Zhang, JC and Yu, SL (2010) Phylogeny of Arachis based on internal transcribed spacer sequences. Genetic Resources and Crop Evolution DOI: 10.1007/s10722-010-9576-2 (online first).Google Scholar
Williams, DE (1996) Aboriginal farming system provides clues to groundnut evolution. In: Pickersgill, and Lock, JM (eds) Advances in Legume Systematics 8. Legumes of Economic Importance. Kew: Royal Botanic Gardens, pp. 1117.Google Scholar
Wojciechowski, MF, Lavin, M and Sanderson, MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid MatK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 18461862.CrossRefGoogle ScholarPubMed