Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-05-02T01:52:27.539Z Has data issue: false hasContentIssue false

Identification of resistant sources for pod shattering in a cowpea (Vigna unguiculata L.) core collection using a modified screening system based on weighted level scores using random impact method

Published online by Cambridge University Press:  23 September 2024

Deepak Bijarniya
Affiliation:
Stress Physiology Lab, Division of Genetics and Plant Breeding, SKUAST-Kashmir, Wadura, India
Sadiah Shafi
Affiliation:
Stress Physiology Lab, Division of Genetics and Plant Breeding, SKUAST-Kashmir, Wadura, India
Aaqif Zaffar
Affiliation:
Stress Physiology Lab, Division of Genetics and Plant Breeding, SKUAST-Kashmir, Wadura, India
Ishrat Riyaz
Affiliation:
Stress Physiology Lab, Division of Genetics and Plant Breeding, SKUAST-Kashmir, Wadura, India
Samreen Fatima
Affiliation:
Stress Physiology Lab, Division of Genetics and Plant Breeding, SKUAST-Kashmir, Wadura, India
Sajad Majeed Zargar
Affiliation:
Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar Campus, India
Kuldeep Tripathi
Affiliation:
Division of Germplasm Evaluation, ICAR-NBPGR, New Delhi, India
P. V. Vara Prasad
Affiliation:
Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
Parvaze A. Sofi*
Affiliation:
Stress Physiology Lab, Division of Genetics and Plant Breeding, SKUAST-Kashmir, Wadura, India
*
Corresponding author: Parvaze A. Sofi; Email: [email protected]

Abstract

In the present study we evaluated a core set of 254 cowpea genotypes for seven pod physical traits and shattering score using a modified weighted average screening system based on random impact assessment. There was substantial variability in all the pod physical traits and shattering score in the cowpea core collection indicating significant diversity of the material in respect of pod traits. Shattering score had a mean value of 5.39 with a range of 0–10. Out of 254 genotypes, 34 were resistant, 83 were moderately resistant, 82 were moderately susceptible and 55 were highly susceptible. Shattering score had significant negative correlation with pod length followed by pod weight, pod breadth, seeds per pod, pod wall weight and pod thickness. PCA concentrated 69.60% variability in the first two principal components with Eigen value of 4.49 for PC1 and 1.07 for PC2, mainly contributed by pod weight, pod length, pod breadth, pod thickness and pod wall weight. The conventional screening methods are based on level of shattering and do not take into account various types of shattering such as fissured, split, twisted or abscised. The present was aimed at identification of shattering resistant genotypes using a modified screening method based on weighted level averages. The study identified several genotypes highly resistant to pod shattering that can be used to develop shattering resistant cowpea varieties for sustainable cowpea farming and highlights the effectiveness of proposed screening method.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andargie, M, Pasquet, RS, Gowda, BS, Muluvi, GM and Timko, MP (2014) Molecular mapping of QTLs for domestication-related traits in cowpea (V. unguiculata (L.) Walp). Euphytica 200, 401412.CrossRefGoogle Scholar
Bruce, DM, Farrent, JW, Morgan, CL and Child, RD (2002) PA–precision agriculture: determining the oilseed rape pod strength needed to reduce seed loss due to pod shatter. Biosystems Engineering 81, 179184.CrossRefGoogle Scholar
Child, RD, Chauvaux, N, John, K, Onckelen, HV and Ulvskov, P (1998) Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. Journal of Experimental Botany 49, 829838.CrossRefGoogle Scholar
Coulibaly, S, Pasquet, RS, Papa, R and Gepts, PAFLP (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theoretical and Applied Genetics 104, 358366.CrossRefGoogle ScholarPubMed
Dong, R, Jahufer, MZZ, Dong, DK, Wang, YR and Liu, ZP (2016) Characterisation of the morphological variation for seed traits among 537 germplasm accessions of common vetch (Vicia sativa L.) using digital image analysis. New Zealand Journal of Agricultural Research 59, 422435.CrossRefGoogle Scholar
Dong, D, Yan, L, Dong, R, Liu, W, Wang, Y and Liu, Z (2017) Evaluation and analysis of pod dehiscence factors in shatter-susceptible and shatter-resistant common vetch. Crop Science 57, 27702776.CrossRefGoogle Scholar
Elbaum, R and Abraham, Y (2014) Insights into the microstructures of hygroscopic movement in plant seed dispersal. Plant Science 223, 124133.CrossRefGoogle Scholar
Fatima, S (2023) Comprehensive Phenotyping of Pod Shattering in Common Bean (Phaseolus vulgaris): Underlying Mechanism and Natural Variation (MSc theses). SKUAST-Kashmir, 141pp.Google Scholar
Fatima, S, Rani, S, Shafi, S, Zaffar, A, Zargar, SM and Sofi, PA (2023) Insights into the biochemical basis of pod shattering in common bean (Phaseolus vulgaris L.) from Western Himalayas. Theoretical Biology Forum 12, 332340.CrossRefGoogle Scholar
Flint-Garcia, SA (2013) Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry 61, 82678276.CrossRefGoogle ScholarPubMed
Gioia, T, Giuseppina, L, Giovanna, A, Elisa, B, Benedettelli, S, Negri, V, Papa, R and Zeuli, PS (2013) Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm. PLoS One 8, e75974.CrossRefGoogle ScholarPubMed
Gregory, TR and Ellis, CA (2009) Conceptions of evolution among science graduate students. BioScience 59, 792799.CrossRefGoogle Scholar
Guo, MW, Zhu, L, Li, HY, Liu, WP, Wu, ZN, Wang, CH and Li, J (2022) Mechanism of pod shattering in the forage legume Medicago ruthenica. Plant Physiology and Biochemistry 185, 260267.CrossRefGoogle ScholarPubMed
Kataliko, RK, Kimani, PM, Muthomi, JW, Wanderi, WS, Olubayo, FM and Nzuve, FM (2019) Resistance and correlation of pod shattering and selected agronomic traits in soybeans. Journal of Plant Studies 8, 3948.CrossRefGoogle Scholar
Kaur, J, Akhatar, J, Goyal, A, Kaur, N, Kaur, S, Mittal, M, Kumar, M, Banga, S and Banga, SS (2020) Genome wide association mapping and candidate gene analysis for pod shatter resistance in Brassica juncea and its progenitor species. Molecular Biology Reports 47, 29632974.CrossRefGoogle ScholarPubMed
Kim, JM, Kim, KH, Jung, J, Kang, BK, Lee, J, Ha, BK and Kang, S (2020) Validation of marker-assisted selection in soybean breeding program for pod shattering resistance. Euphytica 216, 19.CrossRefGoogle Scholar
Krisnawati, A and Adie, MM (2017) Identification of soybean genotypes for pod shattering resistance associated with agronomical and morphological characters. Biosaintifika: Journal of Biology & Biology Education 9, 193200.CrossRefGoogle Scholar
Krisnawati, A, Adie, MM, Soegianto, A and Waluyo, B (2019) Pod shattering resistance and agronomic traits in F5 segregating populations of soybean. SABRAO Journal of Breeding & Genetics 51, 266280.Google Scholar
Krisnawati, A, Soegianto, A and Waluyo, B (2020) Kuswanto (2020): the pod shattering resistance of soybean lines based on the shattering incidence and severity. Czech Journal of Genetics and Plant Breeding 56, 111122.CrossRefGoogle Scholar
Kuai, J, Sun, Y, Liu, T, Zhang, P, Zhou, M, Wu, J and Zhou, G (2016) Physiological mechanisms behind differences in pod shattering resistance in rapeseed (Brassica napus L.) varieties. PLoS One 11, e0157341.CrossRefGoogle ScholarPubMed
Lo, S, Muñoz-Amatriaín, M, Boukar, O, Herniter, I, Cisse, N, Guo, YN, Roberts, PA, Xu, S, Fatokun, C and Close, TJ (2018) Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports 8, 6261.CrossRefGoogle ScholarPubMed
Lush, WM and Evans, LT (1981) The domestication and improvement of cowpeas (Vigna unguiculata (L.) Walp.). Euphytica 30, 579587.CrossRefGoogle Scholar
Murgia, ML, Attene, G, Rodriguez, M, Bitocchi, E, Bellucci, E, Fois, D and Rau, D (2017) A comprehensive phenotypic investigation of the ‘pod-shattering syndrome’ in common bean. Frontiers in Plant Science 8, 233756.CrossRefGoogle ScholarPubMed
Parker, TA, Lo, S and Gepts, P (2021) Pod shattering in grain legumes: emerging genetic and environment-related patterns. The Plant Cell 33, 179199.CrossRefGoogle ScholarPubMed
Price, JS, Hobson, RN, Neale, MA and Bruce, DM (1996) Seed losses in commercial harvesting of oilseed rape. Journal of Agricultural Engineering Research 65, 183191.CrossRefGoogle Scholar
Roberts, JA, Elliott, KA and Gonzalez-Carranza, ZH (2002) Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology 53, 131158.CrossRefGoogle ScholarPubMed
Sofi, PA (2019) Evaluation Standards of Rajmash Germplasm. SKUAST-K and IIPR, 44pp.Google Scholar
Sofi, PA, Mir, RA, Bhat, KA, Mir, RR, Fatima, S, Rani, S and Zargar, SM (2022) From domestication syndrome to breeding objective: insights into unwanted breakup in common beans to improve shattering. Crop and Pasture Science 74, 944960.CrossRefGoogle Scholar
Suzuki, M, Fujino, K and Funatsuki, H (2009) A major soybean QTL, qPDH1, controls pod dehiscence without marked morphological change. Plant Production Science 12, 217223.CrossRefGoogle Scholar
Takahashi, Y, Kongjaimun, A, Muto, C, Kobayashi, Y, Kumagai, M, Sakai, H, and Naito, K (2019) Genetic factor for twisting legume pods identified by fine-mapping of shattering-related traits in azuki bean and yard-long bean. BioRxiv, 774844. https://doi.org/10.1101/774844Google Scholar
Takahashi, Y, Kongjaimun, A, Muto, C, Kobayashi, Y, Kumagai, M, Sakai, H, Satou, K, Teruya, K, Shiroma, A, Shimoji, M, Hirano, T, Isemura, T, Saito, H, Baba-Kasai, A, Kaga, A, Samta, P, Tomooka, N and Naito, K (2020) Same locus for non-shattering seed pod in two independently domesticated legumes, Vigna angularis and Vigna unguiculata. Frontiers in Genetics 11, 748.CrossRefGoogle ScholarPubMed
Tang, H, Cuevas, HE, Das, S, Sezen, UU, Zhou, C, Guo, H, Goff, VH, Ge, Z, Clemente, T and Paterson, AH (2013) Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proceedings of the National Academy of Sciences 110, 1582415829.CrossRefGoogle Scholar
Tiwari, SP and Bhatnagar, PS (1991) Pod shattering as related to other agronomic attributes in soybean. Tropical Agriculture 68, 102103.Google Scholar
Tu, B, Liu, C, Wang, X, Li, Y, Zhang, Q, Liu, X and Herbert, SJ (2019) Greater anatomical differences of pod ventral suture in shatter-susceptible and shatter-resistant soybean cultivars. Crop Science 59, 27842793.CrossRefGoogle Scholar
Xu, P, Wu, X, Muñoz-Amatriain, M, Wang, B, Wu, X, Hu, Y and Li, G (2017) Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant Biotechnology Journal 15, 547557.CrossRefGoogle ScholarPubMed
Zhang, J and Singh, AK (2020) Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into soybean domestication. G3: Genes, Genomes, Genetics 10, 545554.CrossRefGoogle ScholarPubMed
Zhang, Q, Tu, B, Liu, C and Liu, X (2018) Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora 248, 4853.CrossRefGoogle Scholar
Supplementary material: File

Bijarniya et al. supplementary material 1

Bijarniya et al. supplementary material
Download Bijarniya et al. supplementary material 1(File)
File 46.9 KB
Supplementary material: File

Bijarniya et al. supplementary material 2

Bijarniya et al. supplementary material
Download Bijarniya et al. supplementary material 2(File)
File 36.8 KB
Supplementary material: File

Bijarniya et al. supplementary material 3

Bijarniya et al. supplementary material
Download Bijarniya et al. supplementary material 3(File)
File 58.7 KB
Supplementary material: File

Bijarniya et al. supplementary material 4

Bijarniya et al. supplementary material
Download Bijarniya et al. supplementary material 4(File)
File 175 KB
Supplementary material: File

Bijarniya et al. supplementary material 5

Bijarniya et al. supplementary material
Download Bijarniya et al. supplementary material 5(File)
File 151.8 KB