Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T19:26:58.401Z Has data issue: false hasContentIssue false

Direct multiplex PCR for grapevine genotyping and varietal identification

Published online by Cambridge University Press:  05 December 2012

Daniele Migliaro
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Giacomo Morreale
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Massimo Gardiman
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Sara Landolfo
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Manna Crespan*
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
*
*Corresponding author: E-mail: [email protected]

Abstract

Grapevine cultivar identification is based mainly on two complementary methodologies: microsatellite (simple sequence repeat (SSR)) DNA analysis and traditional ampelography. Here, we report a direct multiplex PCR approach that allows the simultaneous amplification of 11 SSR loci from crude samples, i.e. bypassing DNA extraction, by using an engineered DNA polymerase improved to tolerate plant PCR inhibitors. Many different plant tissues were successfully amplified: leaf, root, wood, berry flesh and skin, stalk and must, from wine and table grape varieties, and rootstocks. The direct multiplex PCR that we propose is quicker and cheaper than the methodologies used until now, and provides accurate results. Thus, SSR DNA analysis becomes economically more accessible to a larger number of potential users in addition to research institutes.

Type
Short Communication
Copyright
Copyright © NIAB 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowers, JE, Dangl, GS and Meredith, CP (1999) Development and characterization of additional microsatellite DNA markers for grape. American Journal of Enology and Viticulture 50: 243246.Google Scholar
Crespan, M (2003) The parentage of Muscat of Hamburg. Vitis 42: 193197.Google Scholar
Crespan, M, Cabello, F, Giannetto, S, Ibáñez, J, Kontić, JK, Maletić, E, Pejić, I, Rodriguez, I and Antonacci, D (2006) Malvasia delle Lipari, Malvasia di Sardegna, Greco di Gerace, Malvasia de Sitges and Malvasia dubrovačka – synonyms of an old and famous grape cultivar. Vitis 45: 6973.Google Scholar
Ibáñez, J, Vargas, AM, Palancar, M, Borrego, J and De Andrés, MT (2009) Genetic relationships among table-grape varieties. American Journal of Enology and Viticulture 60: 3542.Google Scholar
Kalinowski, ST, Taper, ML and Marshall, TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 10991106.Google Scholar
Merdinoglu, D, Butterlin, G, Bevilacqua, L, Chiquet, V, Adam-Blondon, AF and Decroocq, S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Molecular Breeding 15: 349366.Google Scholar
Moreno-Sanz, P, Loureiro, MD and Suárez, B (2011) Microsatellite characterization of grapevine (Vitis vinifera L.) genetic diversity in Asturias (Northern Spain). Scientia Horticulturae 129: 433440.Google Scholar
Organisation Internationale de la Vigne et du Vin (OIV) (2009) OIV Descriptor List for Grape Varieties and Vitis Species, 2nd edn. Available at: http://www.oiv.int/oiv/info/frplubicationoiv. Paris: OIV Publisher.Google Scholar
Sefc, KM, Lefort, F, Grando, MS, Scott, KD, Steinkellner, H and Thomas, MR (2001) Microsatellite markers for grapevine: a state of the art. In: Roubelakis-Angelakis, (ed.) Molecular Biology and Biotechnology of Grapevine. Amsterdam: Kluwer Publishers, pp. 130.Google Scholar
This, P, Jung, A, Boccacci, P, Borrego, J, Botta, R, Costantini, L, Crespan, M, Dangl, GS, Eisenheld, C, Ferreira-Monteiro, F, Grando, S, Ibáñez, J, Lacombe, T, Laucou, V, Magalhães, M, Meredith, CP, Milani, N, Peterlunger, E, Regner, F, Zulini, L and Maul, E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics 109: 14481458.Google Scholar
This, P, Lacombe, T and Thomas, MR (2006) Historical origins and genetic diversity of wine grapes. Trends in Genetics 22: 511519.Google Scholar
Welter, LJ, Göktürk-Baydar, N, Akkurt, M, Maul, E, Eibach, R, Töpfer, R and Zyprian, EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Molecular Breeding 20: 359374.CrossRefGoogle Scholar
Supplementary material: File

Migliaro Supplementary Material

Tables 1-2

Download Migliaro Supplementary Material(File)
File 52.7 KB