We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
REFERENCES
Archangeli, D. (1984). Underspecification in Yawelmani phonology and morphology. PhD dissertation, MIT.Google Scholar
Archangeli, D. (1986). Extrametricality and the Percolation Convention. Ms, University of Arizona.Google Scholar
Chomsky, N. & Halle, M. (1968). The sound pattern of English. New York: Harper & Row.Google Scholar
Chung, S. (1983). Transderivational relationships in Chamorro phonology. Lg59. 35–66.Google Scholar
Dresher, B. E. & J., Kaye (1990). A computational learning model for metrical phonology. Cognition34. 137–195.Google Scholar
Dresher, B. E. & Lahiri, A. (1989). The Germanic foot: metrical coherence in Old English. Ms, University of Toronto and Max Planck Institut für Psycholinguistik, Nijmegen.Google Scholar
Giegerich, H. J. (1985). Metrical phonology and phonological structure: German and English. Cambridge: Cambridge University Press.Google Scholar
Goldsmith, J. (1976). Autosegmental phonology. PhD dissertation, MIT. Published 1979, New York: Garland.Google Scholar
Halle, M. (to appear). Respecting metrical structure. NLLT.Google Scholar
Halle, M. & Clements, G. N. (1983). Problem book in phonology. Cambridge, Mass.: MIT Press.Google Scholar
Halle, M. & Kenstowicz, M. (1989). On cyclic and noncyclic stress. Ms, MIT.Google Scholar
Halle, M. & Mohanan, K. P. (1985). Segmental phonology of Modern English. LI16. 57–116.Google Scholar
Halle, M. & Vergnaud, J.-R. (1978). Metrical structures in phonology. Ms, MIT. Revised as Vergnaud & Halle (1979).Google Scholar
Halle, M. & Vergnaud, J.-R. (1980). Three-dimensional phonology. Journal of Linguistic ResearchI. 83–105.Google Scholar
Halle, M. & Vergnaud, J.-R. (1981). Harmony processes. In Klein, W. & Levelt, W. (eds.) Crossing the boundaries in linguistics. Dordrecht: Reidel. 1–23.Google Scholar
Halle, M. & Vergnaud, J.-R. (1982). On the framework of autosegmental phonology. In van der Hulst & Smith (1982b). 65–82.Google Scholar
Halle, M. & Vergnaud, J.-R. (1987). Stress and the cycle. LI18. 45–84.Google Scholar
Hammond, M. (1984). Constraining metrical theory: a modular theory of rhythm and destressing. PhD dissertion, UCLA. Distributed by Indiana University Linguistics Club. Published 1988, New York: Garland.Google Scholar
Hammond, M. (1986). The obligatory-branching parameter in metrical theory. NLLT4. 185–228.Google Scholar
Hammond, M. (1989). Lexical stresses in Macedonian and Polish. Phonology6. 19–38.Google Scholar
Harris, J. W. (1983). Syllable structure and stress in Spanish: a non-linear analysis. Cambridge, Mass.: MIT Press.Google Scholar
Harris, J. W. (1989). The stress erasure convention and cliticization in Spanish. LI20. 339–363.Google Scholar
Hayes, B. (1980). A metrical theory of stress rules. PhD dissertation, MIT. Distributed 1981, Indiana University Linguistics Club.Google Scholar
Hayes, B. (1982). Extrametricality and English stress. LI13. 227–276.Google Scholar
Hayes, B. (1983). A grid-based theory of English meter. LI14. 357–393.Google Scholar
Hayes, B. (1984). The phonology of rhythm in English. LI15. 33–74.Google Scholar
Hayes, B. (1987). A revised parametric metrical theory. NELS17. 274–289.Google Scholar
Hogg, R. & McCully, C. B. (1987). Metrical phonology: a coursebook. Cambridge: Cambridge University Press.Google Scholar
Hulst, H.van, der & Smith, N. (1982a). An overview of autosegmental and metrical phonology. In van der Hulst & Smith (1982b). 1–45.Google Scholar
Hulst, H.van, der & Smith, N. (1982b). The structure of phonological representations. Part I. Dordrecht: Foris.Google Scholar
Hulst, H. van der & Smith, N. (1985). The framework of non-linear generative phonology. In van der Hulst, H. & Smith, N. (eds.) Advances in non-linear phonology. Dordrecht: Foris. 3–55.Google Scholar
Kaisse, E. (1985). Some theoretical consequences of stress rules in Turkish. CLS21. 199–209.Google Scholar
Kaisse, E. M. & Shaw, P. A. (1985). On the theory of Lexical Phonology. Phonology Yearbook2. 1–30.Google Scholar
Key, H (1961). Phonotactics of Cayuvava. IJAL27. 143–150.Google Scholar
Kiparsky, P. (1973). Phonological representations. In Fujimura, O. (ed.) Three dimensions of linguistic theory. Tokyo: TEC. 3–136.Google Scholar
Kiparsky, P. (1982a). From cyclic phonology to lexical phonology. In van der Hulst & Smith (1982b). 131–175.Google Scholar
Kiparsky, P. (1982b). The lexical phonology of Vedic accent. Ms, MIT.Google Scholar
Kiparsky, P. (1985). Some consequences of Lexical Phonology. Phonology Yearbook2. 85–138.Google Scholar
Lahiri, A. & van der Hulst, H. (1988). On foot typology. NELS18. 286–299.Google Scholar
Leben, W. (1982). Metrical or autosegmental. In van der Hulst & Smith (1982b). 177–190.Google Scholar
Leer, J. (1985), Prosody in Alutiiq. In Krauss, M. (ed.) Yupik Eskimo prosodic systems: descriptive and comparative studies. Fairbanks: University of Alaska. 77–133.Google Scholar
Levin, J. (1985). Evidence for ternary feet and implications for a metrical theory of stress. Ms, University of Texas, Austin.Google Scholar
Liberman, M. (1975). The intonational system of English. PhD dissertation, MIT.Google Scholar
Liberman, M. & Prince, A. (1977). On stress and linguistic rhythm. LI8. 249–336.Google Scholar
Lightfoot, D. (1989). The child's trigger experience: degree-o learnability. Behavioral and Brain Sciences12. 321–375.Google Scholar
McCarthy, J. (1986). OCP effects: gemination and antigemination. LI17. 207–263.Google Scholar
Mascaró, J. (1976). Catalan phonology and the phonological cycle. PhD dissertation, MIT.Google Scholar
Paradis, C. (1988). On constraints and repair strategies. The Linguistic Review6. 71–97.Google Scholar
Poser, W. J. (1989). The metrical foot in Diyari. Phonology6. 117–148.Google Scholar
Prince, A. S. (1976). Applying stress. Ms, University of Massachusetts, Amherst.Google Scholar
Prince, A. S. (1983). Relating to the grid. LI14. 19–100.Google Scholar
Prince, A. S. (1985). Improving tree theory. BLSII. 471–490.Google Scholar
Rice, C. (1988). Stress assignment in the Chugach dialect of Alutiiq. Ms, University of Texas, Austin.Google Scholar
Rice, K. (1986). The function of structure preservation: derived environments. NELS17. 501–519.Google Scholar
Ross, J. (1967). Constraints on variables in syntax. PhD dissertation, MIT.Google Scholar
Selkirk, E. O. (1984). Phonology and syntax: the relation between sound and structure. Cambridge, Mass.: MIT Press.Google Scholar
Shaw, P. A. (1985). Modularisation and substantive constraints in Dakota lexical phonology. Phonology Yearbook2. 173–202.Google Scholar
Steriade, D. (1988). Greek accent: a case for preserving structure. LI19. 271–314.Google Scholar
Vergnaud, J.-R (1977). Formal properties of phonological rules. In Butts, R. & Hintikka, J. (eds.) Basic problems in methodology and linguistics. Dordrecht: Reidel. 299–318.Google Scholar
Vergnaud, J.-R. (1979) A formal theory of vowel harmony. In Vago, R. (ed.) Issues in vowel harmony. Amsterdam: John Benjamins. 49–63.Google Scholar
Vergnaud, J.-R. & Halle, M. (1979). Metrical phonology: a fragment of a draft. Ms, MIT.Google Scholar
Williams, E. (1971). Underlying tone in Margi and Igbo. Published 1976, LI7. 463–484.Google Scholar