Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T14:25:53.166Z Has data issue: false hasContentIssue false

Locality in metrical typology*

Published online by Cambridge University Press:  19 November 2009

Eugene Buckley
Affiliation:
University of Pennsylvania

Abstract

Recent work in metrical typology within Optimality Theory has emphasised the rhythmic distribution of stress peaks by reference to clashes and lapses, compared to the more central role of foot constituency characteristic of most previous approaches. One consequence of this emphasis has been the introduction of constraints that require reference to non-adjacent objects in the representation, such as two unstressed syllables plus a word edge or a stress peak. I argue here for a constraint-based approach to metrical typology that permits only strictly local formulations. This approach requires increased reference to foot structure, while maintaining local reference to clashes and lapses. The revised set of constraints predicts a larger set of possible stress systems, but correctly includes an attested iambic pattern excluded by recent theories.

Type
Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alber, Birgit (1997). Quantity sensitivity as the result of constraint interaction. In Booij, Geert & de Weijer, Jeroen van (eds.) Phonology in progress: progress in phonology. The Hague: Holland Academic Graphics. 145.Google Scholar
Alber, Birgit (2000). The right stress comes from the left. Paper presented at International Conference on Stress and Rhythm, Hyderabad.Google Scholar
Alber, Birgit (2001). Right-alignment as avoidance of stress lapse and stress clash. Available as ROA-515 from the Rutgers Optimality Archive.Google Scholar
Alber, Birgit (2005). Clash, Lapse and Directionality. NLLT 23. 485542.Google Scholar
Alderete, John (1995). Winnebago accent and Dorsey's Law. In Beckman, Jill, Dickey, Laura Walsh & Urbanczyk, Suzanne (eds.) Papers in Optimality Theory. Amherst: GLSA. 2151.Google Scholar
Alderete, John (1997). Dissimilation as local conjunction. NELS 27. 1732.Google Scholar
Anderson, Stephen R. (1996). How to put your clitics in their place, or why the best account of second-position phenomena may be something like the optimal one. The Linguistic Review 13. 165191.CrossRefGoogle Scholar
Anderson, Stephen R. (2000). Towards an optimal account of second-position phenomena. In Dekkers et al. (2000). 302333.CrossRefGoogle Scholar
Bagemihl, Bruce (1995). Language games and related areas. In Goldsmith (1995). 697712.Google Scholar
Baković, Eric (2004). Unbounded stress and factorial typology. In McCarthy, John J. (ed.) (2004). Optimality Theory in phonology: a reader. Malden, Mass. & Oxford: Blackwell. 202214.CrossRefGoogle Scholar
Beasley, Tim & Crosswhite, Katherine (2003). Avoiding boundaries: antepenultimate stress in a rule-based framework. LI 34. 361392.Google Scholar
Beckman, Jill N. (1998). Positional faithfulness. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
Beesley, Kenneth R. & Karttunen, Lauri (2003). Finite state morphology. Stanford: CSLI.Google Scholar
Bíró, Tamás (2003). Quadratic alignment constraints and finite state Optimality Theory. In Proceedings of the Workshop on Finite-State Methods in Natural Language Processing (FSMNLP), 10th Conference of the European Chapter of the ACL, Budapest, Hungary. 119126.Google Scholar
Blevins, Juliette (2004). Evolutionary Phonology: the emergence of sound patterns. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bolinger, Dwight L. (1962). Binomials and pitch accent. Lingua 11. 3444.CrossRefGoogle Scholar
Boxwell, Helen & Boxwell, Maurice (1966). Weri phonemes. In Wurm, S. A. (ed.) Papers in New Guinea linguistics No. 5. Canberra: Australian National University. 7793.Google Scholar
Buckley, Eugene (1992). Theoretical aspects of Kashaya phonology and morphology. PhD dissertation, University of California, Berkeley. Published 1994, Stanford: CSLI.Google Scholar
Buckley, Eugene (1994). Persistent and cumulative extrametricality in Kashaya. NLLT 12. 423464.Google Scholar
Buckley, Eugene (1997). Optimal iambs in Kashaya. Rivista di Linguistica 9. 144.Google Scholar
Buckley, Eugene (1999). Uniformity in extended paradigms. In Hermans, Ben & van Oostendorp, Marc (eds.) The derivational residue in phonological Optimality Theory. Amsterdam & Philadelphia: Benjamins. 81–104.Google Scholar
Bye, Patrik & de Lacy, Paul (2000). Edge asymmetries in phonology and morphology. NELS 30. 121135.Google Scholar
Chafe, Wallace L. (1967). Seneca morphology and dictionary. Washington, D.C.: Smithsonian Press.CrossRefGoogle Scholar
Chafe, Wallace L. (1996). Sketch of Seneca, an Iroquoian language. In Goddard, Ives (ed.) Languages (Vol. 17 of Handbook of North American Indians). Washington, D.C.: Smithsonian Institution. 551579.Google Scholar
Chomsky, Noam (1964). The logical basis of linguistic theory. In Lunt, Horace G. (ed.) Proceedings of the 9th International Congress of Linguists. The Hague: Mouton. 914978.Google Scholar
Chomsky, Noam & Halle, Morris (1968). The sound pattern of English. New York: Harper & Row.Google Scholar
Clements, G. N. (1976). Vowel harmony in nonlinear generative phonology: an autosegmental model. Distributed 1980, Indiana University Linguistics Club.Google Scholar
Comrie, Bernard (1976). Irregular stress in Polish and Macedonian. International Review of Slavic Linguistics 1. 227240.Google Scholar
Creel, Sarah C., Newport, Elissa L. & Aslin, Richard N. (2004). Distant melodies: statistical learning of nonadjacent dependencies in tone sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition 30. 11191130.Google ScholarPubMed
Crowhurst, Megan J. (1991). Minimality and foot structure in metrical phonology and prosodic morphology. PhD dissertation, University of Arizona, Tucson. Distributed 1993, Indiana University Linguistics Club.Google Scholar
Crowhurst, Megan J. (1996). An optimal alternative to Conflation. Phonology 13. 409424.CrossRefGoogle Scholar
Das, Shyamal (2001). Some aspects of the phonology of Tripura Bangla and Tripura Bangla English. PhD dissertation, CIEFL Hyderabad. Available as ROA-493 from the Rutgers Optimality Archive.Google Scholar
Dekkers, Joost, Leeuw, Frank van der & van de Weijer, Jeroen (eds.) (2000). Optimality Theory: phonology, syntax, and acquisition. Oxford: Oxford University Press.CrossRefGoogle Scholar
de Lacy, Paul (2007a). The interaction of tone, sonority, and prosodic structure. In de Lacy (2007b). 281307.Google Scholar
de Lacy, Paul (ed.) (2007b). The Cambridge handbook of phonology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Eisner, Jason (1997a). What constraints should OT allow? Handout from paper presented at the 71st Annual Meeting of the Linguistic Society of America, Chicago. Available as ROA-204 from the Rutgers Optimality Archive.Google Scholar
Eisner, Jason (1997b). Efficient generation in primitive Optimality Theory. In Proceedings of the 35th Annual Meeting of the ACL and 8th Conference of the European Chapter of the Association for Computational Linguistics. Morristown, NJ: Association for Computational Linguistics. 313320.CrossRefGoogle Scholar
Eisner, Jason (1997c). FootForm decomposed: using primitive constraints in OT. MIT Working Papers in Linguistics 31. 115143.Google Scholar
Eisner, Jason (2000). Directional constraint evaluation in Optimality Theory. In COLING 2000: Proceedings of the 18th Conference on Computational Linguistics, Saarbrücken. Vol. 1. San Francisico: Morgan Kaufmann. 257263.Google Scholar
Elenbaas, Nine (1999). A unified account of binary and ternary stress: considerations from Sentani and Finnish. PhD dissertation, Utrecht University.Google Scholar
Elenbaas, Nine & Kager, René (1999). Ternary rhythm and the lapse constraint. Phonology 16. 273329.CrossRefGoogle Scholar
Endzelīns, Jānis (1923). Lettische Grammatik. Heidelberg: Winter.Google Scholar
Everett, Daniel L. (2003). Iambic feet in Paumari and the theory of foot structure. Linguistic Discovery 2:1. 2244.Google Scholar
Fitzgerald, Colleen M. (1999). A reanalysis of bidirectionality in Auca. In Antrim, Nancy Mae, Goodall, Grant, Schulte-Nafeh, Martha & Samiian, Vida (eds.) Proceedings of the Western Conference on Linguistics 11 (WECOL 1999). Fresno: Department of Linguistics, California State University, Fresno. 106118.Google Scholar
Fitzgerald, Colleen M. (2002). Tohono O'odham stress in a single ranking. Phonology 19. 253271.CrossRefGoogle Scholar
Fodor, Janet Dean (1998). Unambiguous triggers. LI 29. 136.Google Scholar
Franks, Steven (1987). Regular and irregular stress in Macedonian. International Journal of Slavic Linguistics and Poetics 35/36. 93–142.Google Scholar
Gibson, Edward & Wexler, Kenneth (1994). Triggers. LI 25. 407454.Google Scholar
Goldsmith, John (1976). Autosegmental phonology. PhD dissertation, MIT. Published 1979, New York: Garland.Google Scholar
Goldsmith, John (1990). Autosegmental and metrical phonology. Oxford & Cambridge, Mass.: Blackwell.Google Scholar
Goldsmith, John (ed.) (1995). The handbook of phonological theory. Cambridge, Mass. & Oxford: Blackwell.Google Scholar
Gordon, Matthew (2002). A factorial typology of quantity-insensitive stress. NLLT 20. 491552.Google Scholar
Green, Thomas (1995). The stress window in Pirahã: a reanalysis of rhythm in Optimality Theory. Ms, MIT. Available as ROA-45 from the Rutgers Optimality Archive.Google Scholar
Green, Thomas & Kenstowicz, Michael (1995). The Lapse constraint. Proceedings of the 6th Annual Meeting of the Formal Linguistics Society of the Midwest. 114. Available as ROA-101 from the Rutgers Optimality Archive.Google Scholar
Haas, Mary R. (1977). Tonal accent in Creek. In Hyman (1977b). 195208.Google Scholar
Hale, Kenneth & Eagle, Josie White (1980). A preliminary metrical account of Winnebago accent. IJAL 46. 117132.Google Scholar
Hale, Mark & Reiss, Charles (2008). The phonological enterprise. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hall, Nancy (2003). Gestures and segments: vowel intrusion as overlap. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
Halle, Morris (1987). Grids and trees in metrical phonology. In Dressler, Wolfgang U., Luschützky, Hans C., Pfeiffer, Oskar E. & Rennison, John R. (eds.) Phonologica 1984. Cambridge: Cambridge University Press. 7993.Google Scholar
Halle, Morris & Idsardi, William (1995). General properties of stress and metrical structure. In Goldsmith (1995). 403443.Google Scholar
Halle, Morris & Vergnaud, Jean-Roger (1987). An essay on stress. Cambridge, Mass.: MIT Press.Google Scholar
Hammond, Michael (1984). Constraining metrical theory: a modular theory of rhythm and destressing. PhD dissertation, University of California, Los Angeles. Published 1988, New York: Garland.Google Scholar
Hammond, Michael (1986). The obligatory-branching parameter in metrical theory. NLLT 4. 185228.Google Scholar
Hammond, Michael (1989). Lexical stresses in Macedonian and Polish. Phonology 6. 1938.Google Scholar
Hammond, Michael (1990). Deriving ternarity. Ms, University of Arizona, Tucson.Google Scholar
Hammond, Michael (1998). Is phonology irrelevant? How and why frequency can be modelled in phonology. Literary and Linguistic Computing 13. 165175.CrossRefGoogle Scholar
Hansen, Kenneth C. & Hansen, Lesley E. (1969). Pintupi phonology. Oceanic Linguistics 8. 153170.CrossRefGoogle Scholar
Hansen, Kenneth C. & Hansen, Lesley E. (1978). The core of Pintupi grammar. Alice Springs: Institute for Aboriginal Development.Google Scholar
Harris, James W. (1983). Syllable structure and stress in Spanish: a nonlinear analysis. Cambridge, Mass.: MIT Press.Google Scholar
Hayes, Bruce (1980). A metrical theory of stress rules. PhD dissertation, MIT. Published 1985, New York: Garland.Google Scholar
Hayes, Bruce (1985). Iambic and trochaic rhythm in stress rules. BLS 11. 429446.Google Scholar
Hayes, Bruce (1987). A revised parametric metrical theory. NELS 17. 274289.Google Scholar
Hayes, Bruce (1995). Metrical stress theory: principles and case studies. Chicago: University of Chicago Press.Google Scholar
Hayes, Bruce, Tesar, Bruce & Zuraw, Kie (2004). OTSoft 2.1. http://www.linguistics.ucla.edu/people/hayes/otsoft/.Google Scholar
Heinz, Jeffrey (2007). Learning unbounded stress systems via local inference. NELS 37:1. 261274.Google Scholar
Heinz, Jeffrey (2009). On the role of locality in learning stress patterns. Phonology 26. 303351.CrossRefGoogle Scholar
Heinz, Jeffrey, Kobele, Greg & Riggle, Jason (2005). Exploring the typology of quantity-insensitive stress systems without gradient constraints. Paper presented at the 79th Annual Meeting of the Linguistic Society of America, Oakland.Google Scholar
Houghton, Paula (2006). Ternary stress. Ms, University of Massachusetts, Amherst. Available as ROA-836 from the Rutgers Optimality Archive.Google Scholar
Hung, Henrietta (1994). The rhythmic and prosodic organization of edge constituents. PhD dissertation, Brandeis University. Available as ROA-24 from the Rutgers Optimality Archive.Google Scholar
Hwangbo, Young-Shik (2003). Tonal domains and tonal constraints. Eoneohak 36. 3357.Google Scholar
Hwangbo, Young-Shik (2004). Tones inherited from Middle Korean rising tones. Studies in Phonetics, Phonology and Morphology 10. 581602.Google Scholar
Hyde, Brett (2001). Metrical and prosodic structure in Optimality Theory. PhD dissertation, Rutgers University. Available as ROA-476 from the Rutgers Optimality Archive.Google Scholar
Hyde, Brett (2002). A restrictive theory of metrical stress. Phonology 19. 313359.CrossRefGoogle Scholar
Hyde, Brett (2007a). Non-finality and weight-sensitivity. Phonology 24. 287334.CrossRefGoogle Scholar
Hyde, Brett (2007b). Issues in Banawá prosody: onset sensitivity, minimal words, and syllable integrity. LI 38. 239285.Google Scholar
Hyde, Brett (2008). Bidirectional stress systems. WCCFL 26. 270278.Google Scholar
Hyman, Larry M. (1977a). On the nature of linguistic stress. In Hyman (1977b). 3782.Google Scholar
Hyman, Larry M. (ed.) (1977b). Studies in stress and accent. Los Angeles: Department of Linguistics, University of Southern California.Google Scholar
Idsardi, William J. (1992). The computation of prosody. PhD dissertation, MIT.Google Scholar
Idsardi, William J. (2008). Calculating metrical structure. In Raimy, Eric & Cairns, Charles E. (eds.) Contemporary views on architecture and representations in phonology. Cambridge, Mass.: MIT Press. 191212.Google Scholar
Inkelas, Sharon (1999). Exceptional stress-attracting suffixes in Turkish: representations versus the grammar. In Kager, René, Hulst, Harry van der & Zonneveld, Wim (eds.) The prosody–morphology interface. Cambridge: Cambridge University Press. 134187.Google Scholar
Ishii, Toru (1996). An optimality theoretic approach to ternary stress systems. In Agbayani, Brian & Harada, Naomi (eds.) Proceedings of the South Western Optimality Theory Workshop (SWOT II). UCI Working Papers in Linguistics 2. 95–111.Google Scholar
Jackson, Michael T. T. (1987). A metrical analysis of the pitch-accent system of the Seminole verb. In Munro (1987). 8195.Google Scholar
Jensen, John T. (1974). A constraint on variables in phonology. Lg 50. 675686.Google Scholar
Kager, René (1991). Strict binarity and destressing rules. Ms, University of Utrecht.Google Scholar
Kager, René (1993). Alternatives to the iambic-trochaic law. NLLT 11. 381432.Google Scholar
Kager, René (1994). Ternary rhythm in alignment theory. Ms, University of Utrecht. Available as ROA-35 from the Rutgers Optimality Archive.Google Scholar
Kager, René (1999). Optimality Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kager, René (2001). Rhythmic directionality by positional licensingHandout of paper presented at the 5th Holland Institute of Linguistics Phonology Conference, Potsdam. Available as ROA-514 from the Rutgers Optimality Archive.Google Scholar
Kager, René (2005). Rhythmic licensing theory: an extended typology. Proceedings of the 3rd Seoul International Conference on Linguistics (SICOL). Seoul: Linguistic Society of Korea. 5–31.Google Scholar
Kager, René (2007). Feet and metrical stress. In de Lacy (2007). 195227.CrossRefGoogle Scholar
Kariņš, A. Krišjānis (1996). The prosodic structure of Latvian. PhD dissertation, University of Pennsylvania.Google Scholar
Kennedy, Christopher (1994). Morphological alignment and head projection. In Merchant, Jason, Padgett, Jaye & Walker, Rachel (eds.) Phonology at Santa Cruz 3. Santa Cruz: Linguistics Research Center. 4764.Google Scholar
Kenstowicz, Michael (1994). Sonority-driven stress. Ms, MIT. Available as ROA-33 from the Rutgers Optimality Archive.Google Scholar
Key, Harold H. (1967). Morphology of Cayuvava. The Hague: Mouton.Google Scholar
Legendre, Géraldine (2000). Morphological and prosodic alignment of Bulgarian clitics. In Dekkers et al. (2000). 423462.CrossRefGoogle Scholar
Lerdahl, Fred & Jackendoff, Ray (1983). A generative theory of tonal music. Cambridge, Mass.: MIT Press.Google Scholar
Lunt, Horace G. (1952). Grammar of the Macedonian literary language. Skopje.Google Scholar
McCarthy, John J. (1981). A prosodic theory of nonconcatenative morphology. LI 12. 373418.Google Scholar
McCarthy, John J. (2000). The prosody of phase in Rotuman. NLLT 18. 147197.Google Scholar
McCarthy, John J. (2002). A thematic guide to Optimality Theory. Cambridge: Cambridge University Press.Google Scholar
McCarthy, John J. (2003). OT constraints are categorical. Phonology 20. 75–138.CrossRefGoogle Scholar
McCarthy, John & Prince, Alan (1986). Prosodic morphology. Ms, University of Massachusetts, Amherst & Brandeis University.Google Scholar
McCarthy, John J. & Prince, Alan (1993). Generalized alignment. Yearbook of Morphology 1993. 79–153.CrossRefGoogle Scholar
McCarthy, John J. & Prince, Alan (1995). Faithfulness and reduplicative identity. In Beckman, Jill, Dickey, Laura Walsh & Urbanczyk, Suzanne (eds.) Papers in Optimality Theory. Amherst: GLSA. 249384.Google Scholar
Mailhot, Fred & Reiss, Charles (2004). What is a possible phonological rule? Ms, Concordia University.Google Scholar
Martin, Jack (1992). In support of the Domino Condition. Ms, University of Michigan, Ann Arbor.Google Scholar
Melinger, Alissa (2002). Foot structure and accent in Seneca. IJAL 68. 287315.Google Scholar
Miner, Kenneth L. (1979). Dorsey's Law in Winnebago-Chiwere and Winnebago accent. IJAL 45. 2533.Google Scholar
Munro, Pamela (ed.) (1987). Muskogean linguistics. UCLA Occasional Papers in Linguistics 6.Google Scholar
Nespor, Marina & Vogel, Irene (1989). On clashes and lapses. Phonology 6. 69–116.CrossRefGoogle Scholar
Nevins, Andrew & Vaux, Bert (2003). Consonant harmony in Karaim. In Csirmaz, Aniko, Lee, Youngjoo & Walter, MaryAnn (eds.) Proceedings of the Workshop on Altaic in Formal Linguistics. Cambridge, Mass.: MIT. 175194.Google Scholar
Newport, Elissa L. & Aslin, Richard N. (2004). Learning at a distance: I. Statistical learning of non-adjacent dependencies. Cognitive Psychology 48. 127162.CrossRefGoogle Scholar
Osborn, Henry A. Jr (1966). Warao I: phonology and morphophonemics. IJAL 32. 108123.Google Scholar
Oswalt, Robert L. (1961). A Kashaya grammar (Southwestern Pomo). PhD dissertation, University of California, Berkeley.Google Scholar
Oswalt, Robert L. (1988). The floating accent of Kashaya. In Shipley, William (ed.) In honor of Mary Haas. Berlin: Mouton de Gruyter. 611622.CrossRefGoogle Scholar
Pater, Joe (2000). Non-uniformity in English secondary stress: the role of ranked and lexically specific constraints. Phonology 17. 237274.CrossRefGoogle Scholar
Pearce, Mary (2006). The interaction between metrical structure and tone in Kera. Phonology 23. 259286.CrossRefGoogle Scholar
Plag, Ingo (1999). Morphological productivity: structural constraints in English derivation. Berlin & New York: Mouton de Gruyter.Google Scholar
Poser, William J. (1982). Phonological representation and action-at-a-distance. In Hulst, Harry van der & Smith, Norval (eds.) The structure of phonological representations. Part 2. Dordrecht: Foris. 121158.Google Scholar
Prince, Alan (1976). ‘Applying’ stress. Ms, University of Massachusetts, Amherst.Google Scholar
Prince, Alan (1983). Relating to the grid. LI 14. 19–100.Google Scholar
Prince, Alan (1985). Improving tree theory. BLS 11. 471490.Google Scholar
Prince, Alan (1990). Quantitative consequences of rhythmic organization. CLS 26:2. 355398.Google Scholar
Prince, Alan & Smolensky, Paul (1993). Optimality Theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder. Published 2004, Malden, Mass. & Oxford: Blackwell.Google Scholar
Pruitt, Kathryn (2008). Iterative foot optimization and locality in stress systems. Ms, University of Massachusetts, Amherst.Google Scholar
Revithiadou, Anthi (2004). The Iambic/Trochaic Law revisited: lengthening and shortening in trochaic systems. In Arsenijevic, Boban, Elouazizi, Noureddine, Salzmann, Martin & de Vos, Mark (eds.) Leiden Papers in Linguistics 1. Leiden: University of Leiden. 3762.Google Scholar
Rice, Curtis (1992). Binarity and ternarity in metrical theory: parametric extensions. PhD dissertation, University of Texas at Austin.Google Scholar
Rice, Curtis (2007). The roles of Gen and Con in modeling ternary rhythm. In Blaho, Sylvia, Bye, Patrik & Krämer, Martin (eds.) Freedom of analysis? Berlin & New York: Mouton de Gruyter. 233255.CrossRefGoogle Scholar
Riggle, Jason (2004). Generation, recognition, and learning in finite state Optimality Theory. PhD dissertation, University of California, Los Angeles.Google Scholar
Roca, Iggy (1986). Secondary stress and metrical rhythm. Phonology Yearbook 3. 341370.Google Scholar
Rowicka, Grażyna (1996). 2+2=3: stress in Munster Irish. In Kardela, Henryk & Szymanek, Bogdan (eds.) A Festschrift for Edmund Gussmann. Lublin: University Press of the Catholic University of Lublin. 217238.Google Scholar
Samek-Lodovici, Vieri & Prince, Alan (1999). Optima. Ms, University College London & Rutgers University. Available as ROA-363 from the Rutgers Optimality Archive.Google Scholar
Selkirk, Elisabeth (1984). Phonology and syntax: the relation between sound and structure. Cambridge, Mass: MIT Press.Google Scholar
Shaw, Patricia A., Blake, Susan J., Campbell, Jill & Shepherd, Cody (1999). Stress in hən'q'əmin'əm' (Musqueam) Salish. University of British Columbia Working Papers in Linguistics 2. 131163.Google Scholar
Smolensky, Paul (1995). On the structure of the constraint component Con of UG. Available as ROA-86 from the Rutgers Optimality Archive.Google Scholar
Stemberger, Joseph Paul (1996). The scope of the theory: where does ‘beyond’ lie? CLS 32:2. 139164.Google Scholar
Street, Chester S. & Mollingin, Gregory P. (1981). The phonology of Murinbata. In Waters, Bruce (ed.) Australian phonologies: collected papers. Darwin: Summer Institute of Linguistics. 183244.Google Scholar
Tyhurst, James J. (1987). Accent shift in Seminole nouns. In Munro (1987). 161170.Google Scholar
Vergnaud, Jean-Roger & Halle, Morris (1978). Metrical structures in phonology. Ms, MIT.Google Scholar
Vijver, Ruben van de (1998). The iambic issue: iambs as a result of constraint interaction. PhD dissertation, University of Leiden.Google Scholar
Visch, Ellis (1996). The complexity of vowel lengthening in Carib: the role of closed syllables. In Nespor, Marina & Smith, Norval (eds.) Dam phonology: HIL phonology papers II. The Hague: Holland Academic Graphics. 225251.Google Scholar
Walker, Rachel (2000). Mongolian stress, licensing and factorial typology. Ms, University of California at Santa Cruz. Available as ROA-172 from the Rutgers Optimality Archive.Google Scholar
Yang, Charles D. (2002). Knowledge and learning in natural language. Oxford: Oxford University Press.Google Scholar
Yip, Moira (2002). Tone. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Yu, Alan C. L. (2003). The morphology and phonology of infixation. PhD dissertation, University of California, Berkeley.Google Scholar
Yu, Alan C. L. (2007). A natural history of infixation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Zoll, Cheryl (1996). Parsing below the segment in a constraint-based framework. PhD dissertation, University of California, Berkeley. Published 1998, Stanford: CSLI.Google Scholar