Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T14:33:49.850Z Has data issue: false hasContentIssue false

Gradient syllable weight and weight universals in quantitative metrics*

Published online by Cambridge University Press:  08 December 2011

Kevin M. Ryan
Affiliation:
Harvard University

Abstract

Homeric Greek, Kalevala Finnish, Old Norse and Middle Tamil are all languages in which weight is claimed to be exclusively binary in the poetic metrics. As I demonstrate through corpus studies of these traditions, the poets were sensitive to additional grades of weight, such that finely articulated continua of syllable weight can be inferred from distributional asymmetries in the metres. Across all four languages, the scales are strongly correlated (for example, in each, C0V<C0VC<C0VV<C0VVC). These language-internal scales reflect the cross-linguistic typology of categorical weight criteria, providing new evidence for weight universals. A metrical grammar is proposed in a maximum entropy constraint framework in which categorical and scalar/gradient constraints interact to generate the weight-mapping typology.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdi, Hervé (2007). Bonferroni and Šidák corrections for multiple comparisons. In Salkind, Neil J. (ed.) Encyclopedia of measurement and statistics. Thousand Oaks, Ca.: Sage. 103107.Google Scholar
Allen, W. Sidney (1973). Accent and rhythm. Cambridge: Cambridge University Press.Google Scholar
Árnason, Kristján (1991). The rhythms of dróttkvætt and other Old Icelandic metres. Reykjavik: Institute of Linguistics, University of Iceland.Google Scholar
Árnason, Kristján (1998). Review of Gade (1995). Alvíssmál 8. 98–109.Google Scholar
Árnason, Kristján (2009). On Kuhn's laws and Craigie's law in Old Icelandic poetry. In Dewey, Tonya Kim & Frog, (eds.) Versatility in versification: multidisciplinary approaches to metrics. New York: Lang. 3959.Google Scholar
Aujac, Germaine & Lebel, Maurice (eds.) (1981). Denys d'Halicarnasse: opuscules rhétoriques. Vol. 3: La composition stylistique. Paris: Les Belles Lettres.Google Scholar
Baayen, R. H. (2004). Statistics in psycholinguistics: a critique of some current gold standards. Mental Lexicon Working Papers 1. 145.Google Scholar
Baayen, R. H. (2008). Analyzing linguistic data: a practical introduction to statistics using R. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baayen, R. H., Davidson, D. J. & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59. 390412.Google Scholar
Bates, D. M. & Maechler, Martin (2009). Package ‘lme4’ (Version 0.999375-31): linear mixed-effects models using S4 classes. Available (April 2011) at http://cran.r-project.org/web/packages/lme4/lme4.pdf.Google Scholar
Beckman, Jill N. (1998). Positional faithfulness. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
Beckman, Nataniel (1899). Kritische Beiträge zur altnordischen Metrik. Arkiv för Nordisk Filologi 15. 6793.Google Scholar
Biggs, Henry (1996). A statistical analysis of the metrics of the classic French decasyllable and classic French alexandrine. PhD dissertation, University of California, Los Angeles.Google Scholar
Blumenfeld, Lev (2010). Coercion and minimality. Ms, Carleton University.Google Scholar
Boas, Franz (1947). Kwakiutl grammar with a glossary of the suffixes. Transactions of the American Philosophical Society: New Series 37:3. 201377.Google Scholar
Boersma, Paul & Pater, Joe (2008). Convergence properties of a gradual learning algorithm for Harmonic Grammar. Ms, University of Amsterdam & University of Massachusetts, Amherst. Available as ROA-970 from the Rutgers Optimality Archive.Google Scholar
Broselow, Ellen, Chen, Su-I & Huffman, Marie (1997). Syllable weight: convergence of phonology and phonetics. Phonology 14. 4782.CrossRefGoogle Scholar
Craigie, W. A. (1900). On some points in skaldic metre. Arkiv för Nordisk Filologi 16. 341384.Google Scholar
Crosswhite, Katherine (2006). An auditory approach to phonological prominence. Paper presented at the 14th Manchester Phonology Meeting.Google Scholar
de Lacy, Paul (2002). The formal expression of markedness. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
de Lacy, Paul (2004). Markedness conflation in Optimality Theory. Phonology 21. 145199.CrossRefGoogle Scholar
Devine, Andrew M. & Stephens, Laurence (1975). The abstractness of metrical patterns: generative metrics and traditional explicit metrics. Poetics 4. 411430.Google Scholar
Devine, Andrew M. & Stephens, Laurence (1976). The Homeric Hexameter and a basic principle of metrical theory. Classical Philology 71. 141163.CrossRefGoogle Scholar
Devine, Andrew M. & Stephens, Laurence (1977). Preliminaries to an explicit theory of Greek metre. Transactions of the American Philological Association 107. 103129.Google Scholar
Devine, Andrew M. & Stephens, Laurence (1994). The prosody of Greek speech. Oxford: Oxford University Press.CrossRefGoogle Scholar
DiCanio, Christian (forthcoming). Cross-linguistic perception of Itunyoso Trique tone. Ms, CNRS & Laboratoire Dynamique du Langage, Université Lyon 2.Google Scholar
Flemming, Edward (2001). Scalar and categorical phenomena in a unified model of phonetics and phonology. Phonology 18. 7–44.CrossRefGoogle Scholar
Flemming, Edward (2003). The relationship between coronal place and vowel backness. Phonology 20. 335373.CrossRefGoogle Scholar
Flemming, Edward (2004). Contrast and perceptual distinctiveness. In Hayes, Bruce, Kirchner, Robert & Steriade, Donca (eds.) Phonetically based phonology. Cambridge: Cambridge University Press. 232276.Google Scholar
Gade, Kari Ellen (1995). The structure of Old Norse dróttkvætt poetry. Ithaca, NY: Cornell University Press.Google Scholar
Getty, Michael (1998). A constraint-based approach to the meter of Beowulf. PhD dissertation, Stanford University.Google Scholar
Goldwater, Sharon & Johnson, Mark (2003). Learning OT constraint rankings using a Maximum Entropy model. In Spenador, Jennifer, Eriksson, Anders & Dahl, Östen (eds.) Proceedings of the Stockholm Workshop on Variation within Optimality Theory. Stockholm: Stockholm University. 111120.Google Scholar
Gordon, Matthew (2002). A phonetically driven account of syllable weight. Lg 78. 5180.Google Scholar
Gordon, Matthew (2005). A perceptually-driven account of onset-sensitive stress. NLLT 23. 595653.Google Scholar
Gordon, Matthew (2006). Syllable weight: phonetics, phonology, typology. New York & London: Routledge.Google Scholar
Gordon, Matthew, Jany, Carmen, Nash, Carlos & Takara, Nobutaka (2008). Vowel and consonant sonority and coda weight: a cross-linguistic study. WCCFL 26. 208216.Google Scholar
Gunkel, Dieter & Ryan, Kevin (forthcoming). Hiatus avoidance and metrification in the Rigveda. In Proceedings of the 22nd Annual UCLA Indo-European Conference. Bremen: Hempen.Google Scholar
Halle, Morris (1970). On meter and prosody. In Bierwisch, Manfred & Heidolph, Karl Erich (eds.) Progress in linguistics. The Hague & Paris: Mouton. 6480.Google Scholar
Halle, Morris & Keyser, Samuel Jay (1971). English stress: its form, its growth, and its role in verse. New York: Harper & Row.Google Scholar
Hanson, Kristin & Kiparsky, Paul (1996). A parametric theory of poetic meter. Lg 72. 287335.Google Scholar
Hart, George L. & Heifetz, Hank (1988). The Forest book of the Rāmāyaṇa of Kampan. Berkeley: University of California Press.Google Scholar
Hart, Kausalya (1999). Tamil for beginners. 2 parts. Berkeley: Centers for South and Southeast Asia, University of California.Google Scholar
Hayes, Bruce (1979). The rhythmic structure of Persian verse. Edebiyât 4. 193242.Google Scholar
Hayes, Bruce (1988). Metrics and phonological theory. In Newmeyer, Frederick J. (ed.) Linguistics: the Cambridge survey. Vol. 2: Linguistic theory: extensions and implications. Cambridge: Cambridge University Press. 220249.CrossRefGoogle Scholar
Hayes, Bruce (1989a). Compensatory lengthening in moraic phonology. LI 20. 253306.Google Scholar
Hayes, Bruce (1989b). The prosodic hierarchy in meter. In Kiparsky, & Youmans, (1989). 201260.Google Scholar
Hayes, Bruce (1999). Phonetically driven phonology: the role of Optimality Theory and inductive grounding. In Darnell, Michael, Moravcsik, Edith, Newmeyer, Frederick, Noonan, Michael & Wheatley, Kathleen (eds.) Functionalism and formalism in linguistics. Vol. 1: General papers. Amsterdam & Philadelphia: Benjamins. 243285.Google Scholar
Hayes, Bruce & Moore-Cantwell, Claire (2011). Gerard Manley Hopkins' sprung rhythm: corpus study and stochastic grammar. Phonology 28. 235282.CrossRefGoogle Scholar
Hayes, Bruce & Wilson, Colin (2008). A maximum entropy model of phonotactics and phonotactic learning. LI 39. 379440.Google Scholar
Hoffory, Julius (1889). Eddastudien. Vol. 1. Berlin: Reimer.Google Scholar
Hogg, Richard & McCully, C. B. (1987). Metrical phonology: a course book. Cambridge: Cambridge University Press.Google Scholar
Hubbard, Kathleen (1994). Duration in moraic theory. PhD dissertation, University of California, Berkeley.Google Scholar
Hyman, Larry M. (1985). A theory of phonological weight. Dordrecht: Foris.CrossRefGoogle Scholar
Irigoin, Jean (1965). Review of Luigi Enrico Rossi (1963). Metrica e critica stilistica. Rome: Edizioni dell'Ateneo. Göttingische Gelehrte Anzeigen 217. 224231.Google Scholar
Jaeger, T. Florian (2008). Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language 59. 434446.CrossRefGoogle ScholarPubMed
Jäger, Gerhard (2007). Maximum entropy models and Stochastic Optimality Theory. In Zaenen, Annie, Simpson, Jane, King, Tracy Holloway, Grimshaw, Jane, Maling, Joan & Manning, Chris (eds.) Architectures, rules, and preferences: variations on themes by Joan W. Bresnan. Stanford: CSLI. 467479.Google Scholar
Jakobson, Roman (1933). Über den Versbau der serbokroatischen Volksepen. Archives Néerlandaises de Phonétique Expérimentale 8–9. 4453. Reprinted in Roman Jakobson (1966). Selected writings. Vol. 4: Slavic epic studies. The Hague & Paris: Mouton. 51–60.Google Scholar
Johnson, Mark (2002). Optimality-theoretic Lexical Functional Grammar. In Merlo, Paola & Stevenson, Suzanne (eds.) The lexical basis of sentence processing: formal, computational and experimental issues. Amsterdam & Philadelphia: Benjamins. 5973.Google Scholar
Kambaṉ, (1956). Kampar IyarriyaIrrāmāyaṇam. Critical edition of the Kampāramāyaṇam (c. 1200 ce). Annamalai: Annamalai University Press.Google Scholar
Keating, Patricia A., Cho, Taehong, Fougeron, Cécile & Hsu, Chai-Shune (2003). Domain-initial articulatory strengthening in four languages. In Local, John, Ogden, Richard & Temple, Rosalind (eds.) Phonetic interpretation: papers in laboratory phonology VI. Cambridge: Cambridge University Press. 145163.Google Scholar
Ketner, Katherine H. (2006). Size restrictions in Prosodic Morphology. PhD dissertation, University of Cambridge.Google Scholar
Kiparsky, Paul (1968). Metrics and morphophonemics in the Kalevala. In Gribble, Charles E. (ed.) Studies presented to Professor Roman Jakobson by his students. Cambridge: Slavica. 137148.Google Scholar
Kiparsky, Paul (1972). Metrics and morphophonemics in the Rigveda. In Brame, Michael (ed.) Contributions to generative phonology. Austin: University of Texas Press. 171200.Google Scholar
Kiparsky, Paul (1977). The rhythmic structure of English verse. LI 8. 189247.Google Scholar
Kiparsky, Paul (2003). Finnish noun inflection. In Nelson, Diane & Manninen, Satu (eds.) Generative approaches to Finnic and Saami linguistics. Stanford: CSLI. 109161.Google Scholar
Kiparsky, Paul & Youmans, Gilbert (eds.) (1989). Rhythm and meter. San Diego: Academic Press.Google Scholar
Kuhn, Hans (1983). Das dróttkvætt. Heidelberg: Winter.Google Scholar
Lauerma, Petri (2001). Larin Parasken metriikasta. Virittäjä 105. 4458.Google Scholar
Lehmann, Thomas (1994). Grammatik des Alttamil unter besonderer Berücksichtigung der Cankam-Texte des Dichters Kapilar. Stuttgart: Steiner. Revision of 1992 PhD dissertation, University of Heidelberg.Google Scholar
Leino, Pentti (1986). Language and metre: metrics and the metrical system of Finnish. Translated by Andrew Chesterman. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
Leino, Pentti (1994). The Kalevala metre and its development. In Siikala, Anna-Leena & Vakimo, Sinikka (eds.) Songs beyond the Kalevala: transformations of oral poetry. Helsinki: Suomalaisen Kirjallisuuden Seura. 5674.Google Scholar
Levy, Roger (2010). Probabilistic models in the study of language. Ms, University of California, San Diego.Google Scholar
Lönnrot, Elias (1849). Kalevala taikka vanhoja Karjalan runoja Suomen kansan muinoisista ajoista. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
Lunden, Anya (2006). Weight, final lengthening and stress: a phonetic and phonological case study of Norwegian. PhD dissertation, University of California, Santa Cruz.Google Scholar
McCarthy, John J. (2003). OT constraints are categorical. Phonology 20. 75–138.Google Scholar
McLennan, G. R. (1978). The longum and biceps of the Greek hexameter. Mnemosyne 31. 6870.Google Scholar
Maas, Paul (1962). Greek metre. London: Oxford University Press.Google Scholar
Maddieson, Ian (1993). Splitting the mora. UCLA Working Papers in Phonetics 83. 9–18.Google Scholar
Manaster Ramer, Alexis (1981). How abstruse is phonology? PhD dissertation, University of Chicago.Google Scholar
Manaster Ramer, Alexis (1994). Stefan George and phonological theory. Phonology 11. 317323.Google Scholar
Mester, Armin (1994). The quantitative trochee in Latin. NLLT 12. 161.Google Scholar
Miyashita, Mizuki (2002). Tohono O'odham syllable weight: descriptive, theoretical and applied aspects. PhD dissertation, University of Arizona.Google Scholar
Morén, Bruce (1999). Distinctiveness, coercion and sonority: a unified theory of weight. PhD dissertation, University of Maryland, College Park.Google Scholar
Morén, Bruce (2000). The puzzle of Kashmiri stress: implications for weight theory. Phonology 17. 365396.Google Scholar
Murugan, V. (ed.) (2000). Tolkappiyam. Chennai: Institute of Asian Studies.Google Scholar
Niang, Mamadou (1995). Syllable ‘sonority’ hierarchy and Pulaar stress: a metrical approach. Kansas Working Papers in Linguistics 20. 5368.Google Scholar
Niklas, Ulrike (1988). Introduction to Tamil prosody. Bulletin de l'École Française d'Extrême-Orient 77. 165227.Google Scholar
Parker, Steve (2002). Quantifying the sonority hierarchy. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
Pater, Joe (2009). Weighted constraints in generative linguistics. Cognitive Science 33. 999–1035.Google Scholar
Pater, Joe (forthcoming). Serial Harmonic Grammar and Berber syllabification. In Borowsky, Toni, Kawahara, Shigeto, Shinya, Takahito & Sugahara, Mariko (eds.) Prosody matters: essays in honor of Elisabeth Selkirk. London: Equinox.Google Scholar
Pipping, Hugo (1903). Bidrag till eddametriken. Helsingfors: Tidnings- & Tryckeri-Aktiebolagets Tryckeri.Google Scholar
Pipping, Hugo (1937). Studier i metrik och prosodi. Helsingfors: Mercator.Google Scholar
Potts, Christopher, Pater, Joe, Jesney, Karen, Bhatt, Rajesh & Becker, Michael (2010). Harmonic Grammar with linear programming: from linear systems to linguistic typology. Phonology 27. 77–117.Google Scholar
Prince, Alan (1989). Metrical forms. In Kiparsky, & Youmans, (1989). 4580.Google Scholar
Prince, Alan (1999). Paninian relations. Lecture given at the University of Marburg. Available (July 2010) at http://ling.rutgers.edu/people/faculty/prince.html.Google Scholar
Prince, Alan & Smolensky, Paul (1993). Optimality Theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder. Published 2004, Malden, Mass. & Oxford: Blackwell.Google Scholar
Probert, Philomen (2010). Phonology. In Bakker, Egbert J. (ed.) A companion to the Ancient Greek language. Malden, Mass.: Wiley-Blackwell. 85–103.Google Scholar
Quené, Hugo & van den Bergh, Huub (2008). Examples of mixed-effects modeling with crossed random effects and with binomial data. Journal of Memory and Language 59. 413425.Google Scholar
R Development Core Team (2009). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at http://www.r-project.org.Google Scholar
Rajam, V. S. (1992). A reference grammar of classical Tamil poetry (150 B.C.–pre-fifth/sixth century A.D.). Philadelphia: American Philosophical Society.Google Scholar
Raven, D. S. (1962). Greek metre: an introduction. London: Faber & Faber.Google Scholar
Ripley, B. D. (2011). MASS package for R. Available at cran.r-project.org/web/packages/MASS/.Google Scholar
Russom, Geoffrey (1998). Beowulf and Old Germanic metre. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ryan, Kevin M. (2010). Variable affix order: grammar and learning. Lg 86. 758791.Google Scholar
Ryan, Kevin M. (2011). Gradient weight in phonology. PhD dissertation, University of California, Los Angeles.Google Scholar
Ryan, Kevin M. (forthcoming). Contextual and non-contextual prosodic minimality. NELS 41.Google Scholar
Sadeniemi, Matti (1951). Die Metrik des Kalevala-Verses. Helsinki: Suomilainen Tiedeakatemia.Google Scholar
Sapir, Edward & Swadesh, Morris (1960). Yana dictionary. Berkeley & Los Angeles: University of California Press.Google Scholar
Sievers, Eduard (1893). Altgermanische Metrik. Halle: Niemeyer.Google Scholar
Smolensky, Paul & Legendre, Géraldine (eds.) (2006). The harmonic mind: from neural computation to optimality-theoretic grammar. 2 vols. Cambridge, Mass.: MIT Press.Google Scholar
Steriade, Donca (1982). Greek prosodies and the nature of syllabification. PhD dissertation, MIT.Google Scholar
Steriade, Donca (1991). Moras and other slots. Proceedings of Formal Linguistics Society of Midamerica 1. 254280.Google Scholar
Steriade, Donca (2000). Paradigm uniformity and the phonetics–phonology boundary. In Broe, Michael B. & Pierrehumbert, Janet B. (eds.) Papers in laboratory phonology V: acquisition and the lexicon. Cambridge: Cambridge University Press. 313334.Google Scholar
Steriade, Donca (2001). Directional asymmetries in place assimilation: a perceptual account. In Hume, Elizabeth & Johnson, Keith (eds.) The role of speech perception in phonology. San Diego: Academic Press. 219250.Google Scholar
Steriade, Donca (2008). Metrical evidence for an interlude theory of weight. Handout of paper presented the City University of New York Conference on the Syllable, January 2008.Google Scholar
Steriade, Donca (2009a). The phonology of perceptibility effects: the P-map and its consequences for constraint organization. In Hanson, Kristin & Inkelas, Sharon (eds.) The nature of the word: studies in honor of Paul Kiparsky. Cambridge, Mass.: MIT Press. 151179.Google Scholar
Steriade, Donca (2009b). Units of representation for linguistic rhythm. Slides from paper presented at the Linguistic Society of America Institute, Berkeley, August 2009.Google Scholar
Stevens, S. S. (1946). On the theory of scales of measurement. Science 103. 677680.Google Scholar
Tarlinskaja, Marina (1976). English verse: theory and history. The Hague & Paris: Mouton.CrossRefGoogle Scholar
Tarlinskaja, Marina & Teterina, L. M. (1974). Verse – prose – metre. Linguistics 129. 6386.Google Scholar
Venables, W. N. & Ripley, B. D. (2002). Modern applied statistics with S. 4th edn.New York: Springer.Google Scholar
Wall, Larry (2010). The Perl programming language. Version 5.12. www.perl.org.Google Scholar
West, M. L. (1970). A new approach to Greek prosody. Glotta 48. 185194.Google Scholar
West, M. L. (1982). Greek metre. Oxford: Clarendon.Google Scholar
West, M. L. (1987). Introduction to Greek metre. Oxford: Clarendon.Google Scholar
Wilson, Colin (2006). Learning phonology with substantive bias: an experimental and computational study of velar palatalization. Cognitive Science 30. 945982.Google Scholar
Wilson, Colin & George, Benjamin (2008). Maxent grammar tool. Software package. Available at http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool.Google Scholar
Wolff, Ekkehard (1983). A grammar of the Lamang language (Gwàɗ Làmàŋ). Glückstadt: Augustin.Google Scholar
Youmans, Gilbert (1989). Milton's meter. In Kiparsky, & Youmans, (1989). 341379.Google Scholar
Zec, Draga (1988). Sonority constraints on prosodic structure. PhD dissertation, Stanford University.Google Scholar
Zec, Draga (1995). Sonority constraints on syllable structure. Phonology 12. 85–129.Google Scholar
Zec, Draga (2003). Prosodic weight. In Féry, Caroline & van de Vijver, Ruben (eds.) The syllable in Optimality Theory. Cambridge: Cambridge University Press. 123143.Google Scholar
Zhang, Jie (2007). Constraint weighting and constraint domination: a formal comparison. Phonology 24. 433459.CrossRefGoogle Scholar
Zvelebil, Kamil V. (1989). Classical Tamil prosody: an introduction. Madras: New Era Publications.Google Scholar