Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:12:09.078Z Has data issue: false hasContentIssue false

Gerard Manley Hopkins' sprung rhythm: corpus study and stochastic grammar*

Published online by Cambridge University Press:  21 July 2011

Bruce Hayes
Affiliation:
University of California, Los Angeles
Claire Moore-Cantwell
Affiliation:
University of Massachusetts, Amherst

Abstract

Sprung rhythm is a complex poetic metre invented and used by Gerard Manley Hopkins. We re-examine and amplify a seminal analysis of this metre by Kiparsky (1989). We coded the sprung rhythm corpus for stress, weight and phrasing, then used a computer program to locate every scansion compatible with Kiparsky's analysis. The analysis appears to be nearly exceptionless. However, it is incomplete in that it permits dozens or even hundreds of scansions for certain lines. We propose a Parsability Principle for metrics mandating that ambiguity of scansion be minimised, and suggest that under this proposal, the Kiparskyan system is not a possible metre. Our own revised analysis adds ten new constraints and is cast in the form of a stochastic maxent grammar. It produces an acceptably low level of ambiguity in metrical parsing, and is supported by a good match to the diacritics Hopkins employed to mark his intended scansion.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, Claude Colleer (1935a). The correspondence of Gerard Manley Hopkins and Richard Watson Dixon. London: Oxford University Press.CrossRefGoogle Scholar
Abbott, Claude Colleer (1935b). The letters of Gerard Manley Hopkins to Robert Bridges. London: Oxford University Press.CrossRefGoogle Scholar
Abbott, Claude Colleer (1956). Further letters of Gerard Manley Hopkins. 2nd edn. London: Oxford University Press.Google Scholar
Anttila, Arto (1997a). Variation in Finnish phonology and morphology. PhD dissertation, Stanford University.Google Scholar
Anttila, Arto (1997b). Deriving variation from grammar. In Hinskens, Frans, van Hout, Roeland & Wetzels, W. Leo (eds.) Variation, change and phonological theory. Amsterdam & Philadelphia: Benjamins. 3568.CrossRefGoogle Scholar
Attridge, Derek (1982). The rhythms of English poetry. London & New York: Longman.Google Scholar
Bailey, James (1975). Toward a statistical analysis of English verse: the iambic tetrameter of ten poets. Lisse: de Ridder.Google Scholar
Barnes, Mervin & Esau, Helmut (1978). English prosody reconsidered. Language and Style 11. 212222.Google Scholar
Biggs, Henry (1996). A statistical analysis of the metrics of the classic French decasyllable and the classic French alexandrine. PhD dissertation, University of California, Los Angeles.Google Scholar
Boersma, Paul (1997). How we learn variation, optionality, and probability. Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam 21. 4358.Google Scholar
Boersma, Paul & Hayes, Bruce (2001). Empirical tests of the Gradual Learning Algorithm. LI 32. 4586.Google Scholar
Boersma, Paul & Pater, Joe (2008). Convergence properties of a gradual learning algorithm for Harmonic Grammar. Ms, University of Amsterdam & University of Massachusetts, Amherst. Available as ROA-970 from the Rutgers Optimality Archive.Google Scholar
Boersma, Paul & Weenink, David (2010). Praat: doing phonetics by computer (version 5.1.42). http://www.praat.org/.Google Scholar
Bresnan, Joan, Cueni, Anna, Nikitina, Tatiana & Baayen, R. Harald (2007). Predicting the dative alternation. In Bouma, Gerlof, Krämer, Irene & Zwarts, Joost (eds.) Cognitive foundations of interpretation. Amsterdam: Royal Netherlands Academy of Arts and Sciences. 6994.Google Scholar
Bridges, Robert (1921). Milton's prosody: with a chapter on accentual verse. London: Oxford University Press.Google Scholar
Callow, John C. (1965). Kasem nominals: a study in analyses. Journal of West African Languages 2. 2936.Google Scholar
Chomsky, Noam & Halle, Morris (1968). The sound pattern of English. New York: Harper & Row.Google Scholar
Della Pietra, Stephen, Pietra, Vincent Della & Lafferty, John (1997). Inducing features of random fields. IEEE Transactions: Pattern Analysis and Machine Intelligence 19. 380393.Google Scholar
de Lacy, Paul (2004). Markedness conflation in Optimality Theory. Phonology 21. 145199.CrossRefGoogle Scholar
Dresher, B. Elan & Friedberg, Nila (eds.) (2006). Formal approaches to poetry: recent developments in metrics. Berlin & New York: Mouton de Gruyter.CrossRefGoogle Scholar
Dresher, B. Elan & Lahiri, Aditi (1991). The Germanic foot: metrical coherence in Old English. LI 22. 251286.Google Scholar
Duda, Richard O., Hart, Peter E. & Stork, David G. (2001). Pattern classification. 2nd edn. New York: Wiley.Google Scholar
Elwert, W. Theodor (1984). Italienische Metrik. 2nd edn. Wiesbaden: Steiner.Google Scholar
Fabb, Nigel (2001). Weak monosyllables in iambic verse and the communication of metrical form. Lingua 111. 771790.CrossRefGoogle Scholar
Fabb, Nigel (2002). Language and literary structure: the linguistic analysis of form in verse and narrative. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fabb, Nigel (2006). Generated metrical form and implied metrical form. In Dresher, & Friedberg, (2006). 7791.CrossRefGoogle Scholar
Fabb, Nigel & Halle, Morris (2008). Meter in poetry: a new theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goldwater, Sharon & Johnson, Mark (2003). Learning OT constraint rankings using a Maximum Entropy model. In Spenador, Jennifer, Eriksson, Anders & Dahl, Östen (eds.) Proceedings of the Stockholm Workshop on Variation within Optimality Theory. Stockholm: Stockholm University. 111120.Google Scholar
Gussenhoven, Carlos (1986). English plosive allophones and ambisyllabicity. Gramma 10. 119141.Google Scholar
Halle, Morris & Keyser, Samuel Jay (1966). Chaucer and the study of prosody. College English 28. 187219.CrossRefGoogle Scholar
Hanson, Kristin (1992). Resolution in modern meters. PhD dissertation, Stanford University.Google Scholar
Hanson, Kristin (2002). Quantitative meter in English: the lesson of Sir Philip Sidney. English Language and Linguistics 5. 4191.CrossRefGoogle Scholar
Hanson, Kristin & Kiparsky, Paul (1996). A parametric theory of poetic meter. Lg 72. 287335.Google Scholar
Hayes, Bruce (1983). A grid-based theory of English meter. LI 14. 357393.Google Scholar
Hayes, Bruce (1989). The prosodic hierarchy in meter. In Kiparsky, & Youmans, (1989). 201260.CrossRefGoogle Scholar
Hayes, Bruce (1995). Metrical stress theory: principles and case studies. Chicago: University of Chicago Press.Google Scholar
Hayes, Bruce (2009). Introductory phonology. Malden, Mass. & Oxford: Wiley-Blackwell.Google Scholar
Hayes, Bruce, Tesar, Bruce & Zuraw, Kie (2010). OTSoft 2.3.1. Software package. http://www.linguistics.ucla.edu/people/hayes/otsoft/.Google Scholar
Hayes, Bruce & Wilson, Colin (2008). A maximum entropy model of phonotactics and phonotactic learning. LI 39. 379440.Google Scholar
Healey, Joseph F. (1999). Statistics: a tool for social research. Belmont, Ca.: Wadsworth.Google Scholar
Holder, Alan (1995). Rethinking meter: a new approach to the verse line. Lewisburg, Pa.: Bucknell University Press.Google Scholar
House, Humphry (1959). The journals and papers of Gerard Manley Hopkins. London: Oxford University Press.Google Scholar
Hurley, Michael D. (2005). Darkening the subject of Hopkins' prosody. Victorian Poetry 43. 485496.CrossRefGoogle Scholar
Jespersen, Otto (1933). Notes on metre. In Jespersen, Otto. Linguistica: selected papers in English, French and German. Copenhagen: Levin & Munksgaard. 249274. Paper originally presented in Danish in 1900.Google Scholar
Kahn, Daniel (1976). Syllable-based generalizations in English phonology. PhD dissertation, MIT. Published 1980, New York: Garland.Google Scholar
Kenstowicz, Michael (1994). Phonology in generative grammar. Cambridge, Mass. & Oxford: Blackwell.Google Scholar
Kessler, Brett (1992). External sandhi in Classical Sanskrit. MA thesis, Stanford University.Google Scholar
Kiparsky, Paul (1975). Stress, syntax, and meter. Lg 51. 576616.Google Scholar
Kiparsky, Paul (1977). The rhythmic structure of English verse. LI 8. 189247.Google Scholar
Kiparsky, Paul (1982). Lexical phonology and morphology. In The Linguistic Society of Korea (ed.) Linguistics in the morning calm. Seoul: Hanshin. 391.Google Scholar
Kiparsky, Paul (1989). Sprung rhythm. In Kiparsky, & Youmans, (1989). 305340.CrossRefGoogle Scholar
Kiparsky, Paul (2005). Where Stochastic OT fails: a discrete model of metrical variation. BLS 31. 409430.CrossRefGoogle Scholar
Kiparsky, Paul (2006). A modular metrics for folk verse. In Dresher, & Friedberg, (2006). 7–49.CrossRefGoogle Scholar
Kiparsky, Paul & Youmans, Gilbert (eds.) (1989). Rhythm and meter. San Diego: Academic Press.Google Scholar
Koelb, Clayton (1979). The iambic parameter revisited. Neophilologus 63. 321329.CrossRefGoogle Scholar
Ladd, D. Robert (1986). Intonational phrasing: the case for recursive prosodic structure. Phonology Yearbook 3. 311340.CrossRefGoogle Scholar
McCarthy, John J. (2003). OT constraints are categorical. Phonology 20. 75–138.CrossRefGoogle Scholar
MacKenzie, Norman H. (ed.) (1990). The poetical works of Gerard Manley Hopkins. Oxford: Clarendon Press.CrossRefGoogle Scholar
MacKenzie, Norman H. (1991). The later poetic manuscripts of Gerard Manley Hopkins in facsimile. New York & London: Garland.Google Scholar
Magnuson, Karl & Ryder, Frank G. (1970). The study of English prosody: an alternative proposal. College English 31. 789820.CrossRefGoogle Scholar
Malouf, Robert (2002). A comparison of algorithms for maximum entropy parameter estimation. In Roth, Dan & van den Bosch, Antal (eds.) Proceedings of the 6th Workshop on Computational Language Learning (CoNLL-2002). New Brunswick: Association for Computational Linguistics. 4955.Google Scholar
Mester, Armin (1994). The quantitative trochee in Latin. NLLT 12. 161.Google Scholar
Moore-Cantwell, Claire (2009). Gerard Manley Hopkins' diacritics: a corpus-based study. Ms, University of California, Los Angeles.Google Scholar
Myers, Jerome L., Well, Arnold D. & Lorch, Robert F. Jr. (2010). Research design and statistical analysis. 3rd edn. New York: Routledge.Google Scholar
Nespor, Marina & Vogel, Irene (2007). Prosodic phonology. 2nd edn. Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
Opie, Iona & Opie, Peter (1951). The Oxford dictionary of nursery rhymes. London: Oxford University Press.Google Scholar
Oxford English Dictionary. Online edition (accessed May 2011). Oxford: Oxford University Press. http://oed.com.Google Scholar
Pater, Joe & Tessier, Anne-Michelle (2003). Phonotactic knowledge and the acquisition of alternations. In Solé, M. J., Recasens, D. & Romero, J. (eds.) Proceedings of the 15th International Congress of Phonetic Sciences. Barcelona: Causal Productions. 11771180.Google Scholar
Pinheiro, José C. & Bates, Douglas M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer.CrossRefGoogle Scholar
Prince, Alan (1989). Metrical forms. In Kiparsky, & Youmans, (1989). 4580.CrossRefGoogle Scholar
Prince, Alan & Smolensky, Paul (1993). Optimality Theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder. Published 2004, Malden, Mass. & Oxford: Blackwell.Google Scholar
Russom, Geoffrey (1987). Old English meter and linguistic theory. Cambridge: Cambridge University Press.Google Scholar
Selkirk, Elisabeth (1980). Prosodic domains in phonology: Sanskrit revisited. In Aronoff, Mark & Kean, Mary-Louise (eds.) Juncture. Saratoga: Anma Libri. 107129.Google Scholar
Selkirk, Elisabeth (1984). Phonology and syntax: the relation between sound and structure. Cambridge, Mass: MIT Press.Google Scholar
Sihler, Andrew L. (1995). New comparative grammar of Greek and Latin. Oxford: Oxford University Press.CrossRefGoogle Scholar
Siptár, Péter & Törkenczy, Miklós (2000). The phonology of Hungarian. Oxford: Oxford University Press.CrossRefGoogle Scholar
Smolensky, Paul & Legendre, Géraldine (eds.) (2006). The harmonic mind: from neural computation to optimality-theoretic grammar. 2 vols. Cambridge, Mass.: MIT Press.Google Scholar
Sprott, S. Ernest (1953). Milton's art of prosody. Oxford: Blackwell.Google Scholar
Steele, Timothy (1999). All the fun's in how you say a thing: an explanation of meter and versification. Athens: Ohio University Press.Google Scholar
Tarlinskaja, Marina (1976). English verse: theory and history. The Hague & Paris: Mouton.CrossRefGoogle Scholar
Tarlinskaja, Marina (2006). What is ‘metricality’? English iambic pentameter. In Dresher, & Friedberg, (2006). 5376.CrossRefGoogle Scholar
Tarlinskaja, Marina & Teterina, L. M. (1974). Verse – prose – metre. Linguistics 129. 6386.Google Scholar
Wells, John C. (1982). The accents of English. 3 vols. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wilson, Colin (2006). Learning phonology with substantive bias: an experimental and computational study of velar palatalization. Cognitive Science 30. 945982.CrossRefGoogle ScholarPubMed
Wilson, Colin & George, Benjamin (2009). Maxent grammar tool. Computer program. Available at http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool.Google Scholar
Wimsatt, James I. (1998). Alliteration and Hopkins's sprung rhythm. Poetics Today 19. 531564.CrossRefGoogle Scholar
Wimsatt, James I. (2006). Hopkins's poetics of speech sound: sprung rhythm, lettering, inscape. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Witten, Ian H. & Frank, Eibe (2005). Data mining: practical machine learning tools and techniques. 2nd edn. San Francisco: Morgan Kaufmann.Google Scholar
Young, George (1928). An English prosody on inductive lines. Cambridge: Cambridge University Press.Google Scholar
Youmans, Gilbert (1989). Milton's meter. In Kiparsky, & Youmans, (1989). 341379.Google Scholar
Supplementary material: File

Hayes and Moore-Cantwell supplementary material

Text files

Download Hayes and Moore-Cantwell supplementary material(File)
File 500.7 KB
Supplementary material: PDF

Hayes and Moore-Cantwell

Supplementary information

Download Hayes and Moore-Cantwell(PDF)
PDF 41.5 KB