In “The Epistemology of Geometry” Glymour proposed a necessary structural condition for the synonymy of two space-time theories. David Zaret has recently challenged this proposal, by arguing that Newtonian gravitational theory with a flat, non-dynamic connection (FNGT) is intuitively synonymous with versions of the theory using a curved dynamical connection (CNGT), even though these two theories fail to satisfy Glymour's proposed necessary condition for synonymy.
Zaret allowed that if FNGT and CNGT were not equally well (bootstrap) tested by the relevant phenomena, the two theories would in fact not be synonymous. He argued, however, that when electrodynamic phenomena are considered, the two theories are equally well tested.
We show that it is not FNGT and CNGT which are equally well tested when the electrodynamic phenomena are considered, but only suitable extensions of FNGT and CNGT. Thus, there is good reason to consider FNGT and CNGT to be non-synonymous. We further show that the two extensions of FNGT and CNGT which are equally well tested when electrodynamic phenomena are considered (and which could be considered intuitively synonymous) not only satisfy Glymour's original proposed necessary condition for the synonymy of spacetime theories, they satisfy a plausible stronger condition as well.