Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T17:14:22.403Z Has data issue: false hasContentIssue false

Network and Multilayer Network Approaches to Understanding Human Brain Dynamics

Published online by Cambridge University Press:  01 January 2022

Abstract

Network neuroscience provides a systems approach to the study of the brain and enables the examination of interactions measured at different temporal and spatial scales. We review current methods to quantify the structure of brain networks and compare that structure across different clinical cohorts, cognitive states, and subjects. We further introduce the emerging mathematical concept of multilayer networks and describe the advantages of this approach to model changing brain dynamics over time. We conclude by offering several concrete examples of how multilayer network approaches to neuroimaging data provide novel insights into brain structure and evolving function.

Type
Network Analysis
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research Laboratory and the Army Research Office through contract numbers W911NF-10-2-0022 and W911NF-14-1-0679, the National Institute of Mental Health (2-R01-DC-009209-11), the National Institute of Child Health and Human Development (1R01HD086888-01), the Office of Naval Research, and the National Science Foundation (BCS-1441502 and BCS-1430087). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

References

Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E.. 2006. “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs.” Journal of Neuroscience 26 (1): 6372.CrossRefGoogle ScholarPubMed
Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., and Grafton, S. T.. 2011. “Conserved and Variable Architecture of Human White Matter Connectivity.” Neuroimage 54 (2): 1262–79.CrossRefGoogle ScholarPubMed
Bassett, D. S., and Bullmore, E. T.. 2006. “Small-World Brain Networks.” Neuroscientist 12 (6): 512–23.CrossRefGoogle ScholarPubMed
Bassett, D. S., and Bullmore, E. T. 2009. “Human Brain Networks in Health and Disease.” Current Opinion in Neurology 22 (4): 340–47.CrossRefGoogle ScholarPubMed
Bassett, D. S., and Gazzaniga, M. S.. 2011. “Understanding Complexity in the Human Brain.” Trends in Cognitive Sciences 15 (5): 200209.CrossRefGoogle ScholarPubMed
Bassett, D. S., Greenfield, D. L., Meyer-Lindenberg, A., Weinberger, D. R., Moore, S. W., and Bullmore, E. T.. 2010. “Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits.” PLoS Computational Biology 6 (4): e1000748.CrossRefGoogle ScholarPubMed
Bassett, D. S., and Lynall, M.-E.. 2013. “Network Methods to Characterize Brain Structure and Function.” In Cognitive Neurosciences: The Biology of the Mind, ed. Gazzaniga, M. S., Ivry, R. B., and Mangun, G. R.. Cambridge, MA: MIT Press.Google Scholar
Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., and Lim, K. O.. 2012. “Altered Resting State Complexity in Schizophrenia.” Neuroimage 59 (3): 21962207.CrossRefGoogle Scholar
Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M., and Mucha, P. J.. 2013. “Robust Detection of Dynamic Community Structure in Networks.” Chaos 23 (1): 013142.CrossRefGoogle ScholarPubMed
Bassett, D. S., and Siebenhühner, F.. 2013. “Multiscale Network Organization in the Human Brain.” In Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain, 179204. Weinheim: Wiley.CrossRefGoogle Scholar
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., and Grafton, S. T.. 2011. “Dynamic Reconfiguration of Human Brain Networks during Learning.” Proceedings of the National Academy of Sciences USA 108 (18): 7641–46.CrossRefGoogle ScholarPubMed
Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J., and Grafton, S. T.. 2013. “Task-Based Core-Periphery Organization of Human Brain Dynamics.” PLoS Computational Biology 9 (9): e1003171.CrossRefGoogle ScholarPubMed
Bassett, D. S., Yang, M., Wymbs, N. F., and Grafton, S. T.. 2015. “Learning-Induced Autonomy of Sensorimotor Systems.” Nature Neuroscience 18 (5): 744–51.CrossRefGoogle ScholarPubMed
Betzel, R. F., Griffa, A., Avena-Koenigsberger, A., Goñi, J., Thiran, J.-P., Hagmann, P., and Sporns, O.. 2013. “Multi-Scale Community Organization of the Human Structural Connectome and Its Relationship with Resting-State Functional Connectivity.” Network Science 1 (3): 353–73.CrossRefGoogle Scholar
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.. 2008. “Fast Unfolding of Communities in Large Networks.” Journal of Statistical Mechanics, P10008.Google Scholar
Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Schweiger, J. I., Grimm, O., Heinz, A., Tost, H., Meyer-Lindenberg, A., and Bassett, D. S.. 2015. “Dynamic Reconfiguration of Frontal Brain Networks during Executive Cognition in Humans.” Proceedings of the National Academy of Sciences USA 112 (37): 11678–83.CrossRefGoogle ScholarPubMed
Bullmore, E., and Sporns, O.. 2009. “Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems.” Nature Reviews Neuroscience 10 (3): 186–98.Google ScholarPubMed
Bullmore, E., and Sporns, O. 2012. “The Economy of Brain Network Organization.” Nature Reviews Neuroscience 13 (5): 336–49.CrossRefGoogle ScholarPubMed
Bullmore, E. T., and Bassett, D. S.. 2011. “Brain Graphs: Graphical Models of the Human Brain Connectome.” Annual Review of Clinical Psychology 7:113–40.CrossRefGoogle ScholarPubMed
Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q., Maeder, P., Meuli, R., and Hagmann, P.. 2012. “Mapping the Human Connectome at Multiple Scales with Diffusion Spectrum MRI.” Journal of Neuroscience Methods 203 (2): 386–97.CrossRefGoogle ScholarPubMed
Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J., and Evans, A. C.. 2008. “Revealing Modular Architecture of Human Brain Structural Networks by Using Cortical Thickness from MRI.” Cerebral Cortex 18 (10): 2374–81.CrossRefGoogle ScholarPubMed
Colizza, V., Flammini, A., Serrano, M. A., and Vespignani, A.. 2006. “Detecting Rich-Club Ordering in Complex Networks.” Nature Physics 2:110–15.CrossRefGoogle Scholar
Doron, K. W., Bassett, D. S., and Gazzaniga, M. S.. 2012. “Dynamic Network Structure of Interhemispheric Coordination.” Proceedings of the National Academy of Sciences USA 109 (46): 18661–68.CrossRefGoogle ScholarPubMed
Expert, P., Evans, T. S., Blondel, V. D., and Lambiotte, R.. 2011. “Uncovering Space-Independent Communities in Spatial Networks.” Proceedings of the National Academy of Sciences USA 108 (19): 7663–68.CrossRefGoogle ScholarPubMed
Feldt, S., Bonifazi, P., and Cossart, R.. 2011. “Dissecting Functional Connectivity of Neuronal Microcircuits: Experimental and Theoretical Insights.” Trends in Neuroscience 34 (5): 225–36.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S., Ivry, R. B., and Mangun, G. R., eds. 2013. Cognitive Neuroscience: The Biology of the Mind. Cambridge, MA: MIT Press.Google Scholar
Ginestet, C. E., Nichols, T. E., Bullmore, E. T., and Simmons, A.. 2011. “Brain Network Analysis: Separating Cost from Topology Using Cost-Integration.” PLoS One 6 (7): e21570.CrossRefGoogle ScholarPubMed
Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, S., Frithsen, A., Johnson, A., Tipper, C. M., Miller, M. B., Grafton, S. T., and Carlson, J. M.. 2013. “Structural Foundations of Resting-State and Task-Based Functional Connectivity in the Human Brain.” Proceedings of the National Academy of Sciences USA 110 (15): 6169–74.CrossRefGoogle ScholarPubMed
Holme, P. 2012. “Temporal Networks.” Physics Reports 519:97125.CrossRefGoogle Scholar
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Penna, S. Della, Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., and Chang, C.. 2013. “Dynamic Functional Connectivity: Promise, Issues, and Interpretations.” Neuroimage 80:360–78.CrossRefGoogle ScholarPubMed
Kaiser, M., and Hilgetag, C. C.. 2006. “Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems.” PLoS Computational Biology 2 (7): e95.CrossRefGoogle ScholarPubMed
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A.. 2014. “Multilayer Networks.” Journal of Complex Networks 2 (3): 203–71.CrossRefGoogle Scholar
Klimm, F., Bassett, D. S., Carlson, J. M., and Mucha, P. J.. 2014. “Resolving Structural Variability in Network Models and the Brain.” PLoS Computational Biology 10 (3): e1003491.CrossRefGoogle ScholarPubMed
Latora, V., and Marchiori, M.. 2001. “Efficient Behavior of Small-World Networks.” Physical Review Letters 87 (19): 198701.CrossRefGoogle ScholarPubMed
Mantzaris, A. V., Bassett, D. S., Wymbs, N. F., Estrada, E., Porter, M. A., Mucha, P. J., Grafton, S. T., and Higham, D. J.. 2013. “Dynamic Network Centrality Summarizes Learning in the Human Brain.” Journal of Complex Networks 1 (1): 8392.CrossRefGoogle Scholar
Medaglia, J. D., Lynall, M. E., and Bassett, D. S.. 2015. “Cognitive Network Neuroscience.” Journal of Cognitive Neuroscience 27 (8): 1471–91.CrossRefGoogle ScholarPubMed
Meunier, D., Achard, S., Morcom, A., and Bullmore, E.. 2009. “Age-Related Changes in Modular Organization of Human Brain Functional Networks.” Neuroimage 44 (3): 715–23.CrossRefGoogle ScholarPubMed
Meunier, D., Lambiotte, R., and Bullmore, E. T.. 2010. “Modular and Hierarchically Modular Organization of Brain Networks.” Frontiers in Neuroscience 4:200.CrossRefGoogle ScholarPubMed
Muldoon, S. F., Bridgeford, E. W., and Bassett, D. S.. 2016. “Small-World Propensity and Weighted Brain Networks.” Scientific Reports 6:22057.CrossRefGoogle ScholarPubMed
Newman, M. E. 2006. “Modularity and Community Structure in Networks.” Proceedings of the National Academy of Sciences USA 103 (23): 8577–82.CrossRefGoogle ScholarPubMed
Newman, M. E. 2010. Networks: An Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Palla, G., Derényi, I., Farkas, I., and Vicsek, T.. 2005. “Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society.” Nature 435 (7043): 814–18.CrossRefGoogle ScholarPubMed
Porter, M. A., Onnela, J.-P., and Mucha, P. J.. 2009. “Communities in Networks.” Notices of the American Mathematical Society 56 (9): 1082–97., 1164–66.Google Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., et al. 2011. “Functional Network Organization of the Human Brain.” Neuron 72 (4): 665–78.CrossRefGoogle ScholarPubMed
Rubinov, M., and Bassett, D. S.. 2011. “Emerging Evidence of Connectomic Abnormalities in Schizophrenia.” Journal of Neuroscience 31 (17): 6263–65.CrossRefGoogle Scholar
Rubinov, M., and Sporns, O.. 2011. “Weight-Conserving Characterization of Complex Functional Brain Networks.” Neuroimage 56 (4): 2068–79.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., and Rossi, S.. 2014. “Efficiency of Weak Brain Connections Support General Cognitive Functioning.” Human Brain Mapping 35 (9): 4566–82.CrossRefGoogle ScholarPubMed
Shih, C. T., Sporns, O., Yuan, S. L., Su, T. S., Lin, Y. J., Chuang, C. C., Wang, T. Y., Lo, C. C., Greenspan, R. J., and Chiang, A. S.. 2015. “Connectomics-Based Analysis of Information Flow in the Drosophila Brain.” Current Biology 25 (10): 1249–58.CrossRefGoogle ScholarPubMed
Sporns, O. 2011. “The Human Connectome: A Complex Network.” Annals of the New York Academy of Sciences 1224 (1): 109–25.CrossRefGoogle ScholarPubMed
Sporns, O. 2013. “Structure and Function of Complex Brain Networks.” Dialogues in Clinical Neuroscience 15 (3): 247–62.Google ScholarPubMed
Sporns, O. 2014. “Contributions and Challenges for Network Models in Cognitive Neuroscience.” Nature Neuroscience 17 (5): 652–60.CrossRefGoogle ScholarPubMed
Stam, C. J. 2014. “Modern Network Science of Neurological Disorders.” Nature Reviews Neuroscience 15 (10): 683–95.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., and Sporns, O.. 2011. “Rich-Club Organization of the Human Connectome.” Journal of Neuroscience 31 (44): 15775–86.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., and Sporns, O. 2013. “Network Hubs in the Human Brain.” Trends in Cognitive Sciences 17 (12): 683–96.CrossRefGoogle ScholarPubMed
Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., and He, Y.. 2009. “Parcellation-Dependent Small-World Brain Functional Networks: A Resting-State fMRI Study.” Human Brain Mapping 30 (5): 1511–23.CrossRefGoogle ScholarPubMed
Watts, D. J., and Strogatz, S. H.. 1998. “Collective Dynamics of ‘Small-World’ Networks.” Nature 393 (6684): 440–42.CrossRefGoogle ScholarPubMed
Wymbs, N. F., Bassett, D. S., Mucha, P. J., Porter, M. A., and Grafton, S. T.. 2012. “Differential Recruitment of the Sensorimotor Putamen and Frontoparietal Cortex during Motor Chunking in Humans.” Neuron 74 (5): 936–46.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., and Bullmore, E. T.. 2010. “Whole-Brain Anatomical Networks: Does the Choice of Nodes Matter?Neuroimage 50 (3): 970–83.CrossRefGoogle ScholarPubMed