Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T22:17:15.675Z Has data issue: false hasContentIssue false

The Interplay of Instrumentation, Experiment, and Theory: Patterns Emerging from Case Studies on Solar Redshift, 1890–1960

Published online by Cambridge University Press:  01 April 2022

Klaus Hentschel*
Affiliation:
University of Göttingen
*
Institute for History of Science, University of Göttingen, Humboldtallee 11, D-37073 Göttingen, Germany

Abstract

This paper discusses a series of case studies on observations, experiments, and the theoretical interpretation between 1890 and 1960 of a shift of dark Fraunhofer lines in the solar spectrum. I argue for the use of flow charts to analyze interconnections and to identify sequences of research strategies. Also I advocate using a newly-developed tool called “block diagram” representation of experimental systems as an appropriate method to identify recurrent patterns in the interplay of instrumentation, experiment, and theory in research episodes.

Type
Symposium: Patterns in the Interrelation of Experiment, Instrumentation, and Theory
Copyright
Copyright © Philosophy of Science Association 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brush, S. G. (1995), “Dynamics of Theory Change: The Role of Prediction”, in Hull, D., Forbes, M., and Burian, R. M. (eds.), PSA 1994, v. 2. East Lansing, MI: Philosophy of Science Association, pp. 133145.Google Scholar
Darden, L. (1991), Theory Change in Science: Strategies from Mendelian Genetics. Oxford: Oxford University Press.Google Scholar
Dörries, M. (1995), “Heinrich Kayser as Philologist of Physics”, Historical Studies in the Physical Sciences 26: 133.10.2307/27757755CrossRefGoogle Scholar
Franklin, A. (1986), The Neglect of Experiment. Cambridge: Cambridge University Press.10.1017/CBO9780511624896CrossRefGoogle Scholar
Galison, P. (1987), How Experiments End. Chicago: University of Chicago Press.Google Scholar
Galison, P. (1988a) “Multiple Constraints, Simultaneous Solutions”, in Fine, A. and Leplin, J. (eds.), PSA 1988, v. 2. East Lansing, MI: Philosophy of Science Association, pp. 157163.Google Scholar
Galison, P. (1988b), “History, Philosophy, and the Central Metaphor”, Science in Context 2: 197212.10.1017/S0269889700000557CrossRefGoogle Scholar
Gooding, D., Pinch, T., and Schaffer, S. (eds.) (1989), The Uses of Experiment. Cambridge: Cambridge University Press.Google Scholar
Hacking, I. (1983), Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge: Cambridge University Press.10.1017/CBO9780511814563CrossRefGoogle Scholar
Galison, P. (1988), “On the Stability of the Laboratory Sciences”, The Journal of Philosophy 85: 507514.Google Scholar
Hentschel, K. (1992), Der Einstein-Turm, E. F. Freundlich und die Relativitätstheorie, Heidelberg: Spektrum. English translation (1997) as The Einstein Tower. Stanford: Stanford University Press.Google Scholar
Hentschel, K. (1993a), “The Conversion of St. John—A Case Study on the Interplay of Theory and Experiment”, Science in Context 6: 137194.10.1017/S0269889700001344CrossRefGoogle Scholar
Hentschel, K. (1993b), “The Discovery of the Redshift of Solar Fraunhofer Lines by Rowland and Jewell in Baltimore around 1890”, Historical Studies in the Physical Sciences 23: 219277.10.2307/27757699CrossRefGoogle Scholar
Hentschel, K. (1995), Zum Zusammenspiel von Instrument, Experiment und Theorie am Beispiel der Rotverschiebung im Sonnenspektrum und verwandter spektraler Verschiebungseffekte von ca. 1880 bis etwa 1960, Habilitation thesis, Hamburg.Google Scholar
Hentschel, K. (1996), “Measurements of Gravitational Redshift between 1959 and 1971”, Annals of Science 53: 269295.10.1080/00033799600200211CrossRefGoogle Scholar
Hentschel, K. (1997), “An Unwelcome Discovery: The Pole Effect in the Electric Arc”, Archive for History of Exact Sciences, 51: 199271.10.1007/BF00384117CrossRefGoogle Scholar
Hentschel, K. (1998), “Fine Structure and Dynamics of Experimental Systems”, in Heidelberger, M. and Steinle, F. (eds.), Die Vielfalt des Experiments. Baden Baden: Nomos, forthcoming.Google Scholar
Holton, G., Chang, H., and Jurkowitz, E. (1996), “How a Scientific Discovery is Made: A Case History”, American Scientist 84: 364375.Google Scholar
Rheinberger, H.-J. (1992), “Experiment, Difference, and Writing”, Studies in History and Philosophy of Science 23: 305–331, 389422.10.1016/0039-3681(92)90002-NCrossRefGoogle ScholarPubMed
Rheinberger, H.-J. and Hagner, M. (1993), “Experimentalsysteme”, in Die Experimentalisierung des Lebens. Berlin: Akademie-Verlag, pp. 727.Google Scholar
Steinle, F. (1994), “Experiment, Speculation and Law: Faraday's Analysis of Arago's Wheel”, in Hull, D., Forbes, M. and Burian, R. M. (eds.), PSA 1994, v. 1. East Lansing, MI: Philosophy of Science Association, pp. 293303.Google Scholar
Trumpler, M.J. (1992), Questioning Nature: Experimental Investigations of Animal Electricity in Germany, 1791–1810. Ph.D. Dissertation, Yale University.Google Scholar