Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T08:59:44.334Z Has data issue: false hasContentIssue false

Exploratory Concept Formation and Tool Development in Neuroscience

Published online by Cambridge University Press:  05 August 2022

Philipp Haueis*
Affiliation:
Department of Philosophy, Bielefeld University, Bielefeld, Germany

Abstract

Developing tools is a crucial aspect of experimental practice, yet most discussions of scientific change traditionally emphasize theoretical over technological change. To elaborate on the role of tools in scientific change, I offer an account that shows how scientists use tools in exploratory experiments to form novel concepts. I apply this account to two cases in neuroscience and show how tool development and concept formation are often intertwined in episodes of tool-driven change. I support this view by proposing common normative principles that specify when exploratory concept formation and tool development succeed (rather than fail) to initiate scientific change.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arabatzis, Theodore, and Nersessian, Nancy J.. 2015. “Concepts Out of Theoretical Contexts.” In Boston Studies in the Philosophy and History of Science, vol. 312, edited by Arabatzis, Theodore, Renn, Jürgen, and Simões, Ana. Boston Studies in History and Philosophy of Science 312. Cham, Switzerland: Springer.Google Scholar
Baird, Davis, and Thomas, Faust. 1990. “Scientific Instruments, Scientific Progress and the Cyclotron.British Journal for the Philosophy of Science 41 (2):147–75. https://doi.org/10.1093/bjps/41.2.147 CrossRefGoogle Scholar
Barlow, Horace B. 1953a. “Action Potentials from the Frog’s Retina.” Journal of Physiology 119 (1):5868. https://doi.org/10.1113/jphysiol.1953.sp004828 CrossRefGoogle ScholarPubMed
Barlow, Horace B. 1953b. “Summation and Inhibition in the Frog’s Retina.” Journal of Physiology 119 (1):6988. https://doi.org/10.1113/jphysiol.1953.sp004829 CrossRefGoogle ScholarPubMed
Barlow, Horace B. 1972. “Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology?Perception 1 (4):371–94. https://doi.org/10.1068/p010371 CrossRefGoogle ScholarPubMed
Bechtel, William. 1993. “Integrating Sciences by Creating New Disciplines.” Biology and Philosophy 8 (3):277–99. https://doi.org/10.1007/BF00860430 CrossRefGoogle Scholar
Bickle, John. 2016. “Revolutions in Neuroscience: Tool Development.” Frontiers in Systems Neuroscience 10:24. https://doi.org/10.3389/fnsys.2016.00024 CrossRefGoogle ScholarPubMed
Bickle, John. 2018. “From Microscopes to Optogenetics: Ian Hacking Vindicated.Philosophy of Science 85 (5):1065–77. https://doi.org/10.1086/699760 CrossRefGoogle Scholar
Biswal, Barat B., 2012. “Resting State fMRI: A Personal History.NeuroImage 62 (2):938–44. https://doi.org/10.1016/j.neuroimage.2012.01.090 CrossRefGoogle ScholarPubMed
Biswal, Barat B., Zerrin Yetkin, F., Haughton, Victor M., and Hyde, James S.. 1995. “Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI.” Magnetic Resonance in Medicine 34 (4):537–41. https://doi.org/10.1002/mrm.1910340409 CrossRefGoogle ScholarPubMed
Broyd Samantha, J., Charmaine Demanuele, Stefan Debener, Helps, Suzannah K., James, Christopher J., and Sonuga-Barke, Edmund J. S.. 2008. “Default-Mode Brain Dysfunction in Mental Disorders: A Systematic Review.” Neuroscience Biobehavioral Reviews 33 (3):279–96. https://doi.org/10.1016/j.neubiorev.2008.09.002 CrossRefGoogle ScholarPubMed
Burian, Richard M. 1997. “Exploratory Experimentation and the Role of Histochemical Techniques in the Work of Jean Brachet, 1938–1952.” History and Philosophy of the Life Sciences 19 (1):2745. https://www.jstor.org/stable/23332033 Google ScholarPubMed
Chang, Hasok. 2004. Inventing Temperature. Measurement and Scientific Progress. Oxford: Oxford University Press.CrossRefGoogle Scholar
Colaço, David. 2018. “Rethinking the Role of Theory in Exploratory Experimentation.” Biology and Philosophy 33 (5–6):38. https://doi.org/10.1007/s10539-018-9648-9 CrossRefGoogle Scholar
Cole, Kenneth. 1983. “Squid Axon Membrane: Impedance Decrease to Voltage Clamp.” Annual Reviews Neuroscience 5:305–23. https://doi.org/10.1146/annurev.ne.05.030182.001513 CrossRefGoogle Scholar
Craver, Carl F. 2003. “The Making of a Memory Mechanism.” Journal of the History of Biology 36 (1):153–95. https://doi.org/10.1023/a:1022596107834 CrossRefGoogle ScholarPubMed
Craver, Carl F. 2007. Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience. Oxford: Oxford University Press.CrossRefGoogle Scholar
Dellsén, Finnur. 2018. “Scientific Progress: Four Accounts.” Philosophical Compass 13 (11): https://doi.org/10.1111/phc3.12525 CrossRefGoogle Scholar
Dyson, Freeman. 1997. Imagined Worlds. Cambridge, MA: Harvard University Press.Google Scholar
Dyson, Freeman. 1999. The Sun, the Genome and the Internet: Tools of Scientific Revolutions. Oxford: Oxford University Press Google Scholar
Dyson, Freeman. 2012. “Is Science Mostly Driven by Ideas or by Tools?Science 338 (6113): 1426. https://doi.org/10.1126/science.1232773 CrossRefGoogle ScholarPubMed
Elliot, Kevin C. 2007. “The Varieties of Exploratory Experimentation in Nanotoxicology.” History and Philosophy of the Life Sciences 29 (3):313–36. https://www.jstor.org/stable/23334264 Google Scholar
Ewert, Jörg P. 1987. “Neuroethology of Releasing Mechanisms: Prey-catching in Toads.” Behavioral and Brain Sciences 10 (3): 337405. https://doi.org/10.1017/S0140525X00023128 CrossRefGoogle Scholar
Feest, Uljana. 2011. “Remembering (Short-Term) Memory: Oscillations of an Epistemic Thing.” Erkenntnis 75 (3):391411. https://doi.org/10.1007/s10670-011-9341-8 CrossRefGoogle Scholar
Feest, Uljana. 2012. “Exploratory Experiments, Concept Formation, and Theory Construction.” In Scientific Concepts in Investigative Practice, edited by Steinle, Friedrich and Feest, Uljana, 167–89. Berlin: Springer. https://doi.org/10.1515/9783110253610.167 CrossRefGoogle Scholar
Franklin, Laura R. 2005. “Exploratory Experiments.Philosophy of Science 72 (5): 888–99. https://doi.org/10.1086/508117 CrossRefGoogle Scholar
Gesteland, Robert, C., Howland, B., Lettvin, Jerome Y. and Pitts, Walter H. 1959. “Some Comments on Microelectrodes.” Proceedings of the IREEE 57 (11): 1856–1862. https://doi.org/10.1109/JRPROC.1959.287156 CrossRefGoogle Scholar
Giere, Ronald, Bickle, John, and Mauldin, Robert. 2006. Understanding Scientific Reasoning. 5th ed. Belmont, CA: Wadsworth Publishing.Google Scholar
Greicius, Michael D., Ben Krasnow, Allan L. Reiss, and Menon, Vinod. 2003. “Functional Connectivity in the Resting Brain: A Network Analysis of the Default Mode Hypothesis.Proceedings of the National Academy of the Sciences USA. 100 (1):253–58. https://doi.org/10.1073/pnas.0135058100 CrossRefGoogle Scholar
Gusnard, D. A., and Raichle, M. E.. 2001. “Searching for a Baseline: Functional Imaging and the Resting Human Brain.” Nature Reviews Neuroscience 2 (10):685–94. https://doi.org/10.1038/35094500 CrossRefGoogle ScholarPubMed
Hacking, I. 1983. Representing and Intervening: Introductory Topics to Philosophy of the Natural Sciences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hartline, Haldan K. 1938. “The Response of Single Optic Nerve Fibers of the Vertebrate Eye to Illumination of the Retina.” American Journal of Physiology 121 (2):400–15. https://doi.org/10.1152/ajplegacy.1938.121.2.400 CrossRefGoogle Scholar
Haueis, Philipp. 2014. “Meeting the Brain on Its Own Terms.” Frontiers in Human Neuroscience 8: 815. https://doi.org/10.3389/fnhum.2014.00815 CrossRefGoogle ScholarPubMed
Haueis, Philipp. 2017. “Meeting the Brain on Its own Terms. Exploratory Concept Formation and Noncognitive Functions in Neuroscience.” PhD Diss., Otto-von-Guericke University Magdeburg.Google Scholar
Haueis, Philipp. 2018. “Beyond Cognitive Myopia: A Patchwork Approach to the Concept of Neural Function.” Synthese 195 (12):53735402. https://doi.org/10.1007/s11229-018-01991-z CrossRefGoogle Scholar
Haueis, Philipp. 2021. “A Generalized Patchwork Approach to Scientific Concepts.” The British Journal for Philosophy of Science. https://doi.org/10.1086/716179 CrossRefGoogle Scholar
Hodgkin, Alan L., and Huxley, Andrew F., 1952. “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve.” Journal of Physiology 117 (4):500–44. https://doi.org/10.1113/jphysiol.1952.sp004764 CrossRefGoogle ScholarPubMed
Hodgkin, Alan L., Huxley, Andrew F., and Katz, Bernard, 1952. “Measurement of Current-Voltage Relations in the Membrane of the Giant Axon of Loligo .” Journal of Physiology 116 (4):424–48. https://doi.org/10.1113/jphysiol.1952.sp004716 CrossRefGoogle ScholarPubMed
Iadecola, Costatino. 2004. “Neurovascular Regulation in the Normal Brain and in Alzheimer’s Disease.” Nature Reviews Neuroscience 5 (5):347–60. https://doi.org/10.1038/nrn1387 CrossRefGoogle ScholarPubMed
Kaiser, Marie. 2019. “Normativity in the Philosophy of Science.” Metaphilosophy 50 (1):3662. https://doi.org/10.1111/meta.12348 CrossRefGoogle Scholar
Kennedy, M. B. 1983. “Experimental Approaches to Understanding the Role of Protein Phosphorylation in the Regulation of Neuronal Function.” Annual Reviews Neuroscience 6:493525. https://doi.org/10.1146/annurev.ne.06.030183.002425 CrossRefGoogle ScholarPubMed
Klein, Colin. 2014. “The Brain at Rest: What It’s Doing and Why That Matters.” Philosophy of Science 81 (5):974–85. https://doi.org/10.1086/677692 CrossRefGoogle Scholar
Kuhn, Thomas. 1970. The Structure of Scientific Revolutions. 2nd ed. Chicago: University of Chicago Press.Google Scholar
Laudan, L. 1977. Progress and Its Problems: Toward a Theory of Scientific Growth. Berkeley: University of California Press.Google Scholar
Lettvin, Jerome Y., Humberto Maturana, R., McCulloch, Warren S., and Pitts, Walter H.. 1959. “What the Frog’s Eye Tells the Frog’s Brain.” Proceedings of the IRE 47 (11):1940–51. https://doi.org/10.1109/JRPROC.1959.287207 CrossRefGoogle Scholar
Lettvin, Jerome Y., Humberto Maturana, R., McCulloch, Warren S., and Pitts, Walter H.. 1961. “Two Remarks on the Visual System of the Frog.” In Sensory Communication, edited by Walter, A. Rosenblith, 757–76. New York: Wiley and Sons. https://doi.org/10.7551/mitpress/9780262518420.003.0038 Google Scholar
Lisman, John E. 1985. “A Mechanism for Memory Storage Insensitive to Molecular Turnover: A Bistable Autophosphorylation Kinase.” Proceedings of the National Academy of the Sciences USA 82 (9):3055–57. https://doi.org/10.1073/pnas.82.9.3055 CrossRefGoogle Scholar
Love, A. 2008. “Explaining Evolutionary Innovations and Novelties: Criteria of Explanatory Adequacy and Epistemological Prerequisites.” Philosophy of Science 75 (5):874–86. https://doi.org/10.1086/594531 CrossRefGoogle Scholar
Margulies, Daniel S., Ghosh, Satrajit S., Alexandros Goulas, Marcel Falkiewicz, Huntenburg, Julia M., Georg Langs, Gleb Bezgin, Eickhoff, Simon B., Xavier Castellanos, F., Petrides, Michael, Jefferies, Elizabeth, and Smallwood, Jonathan. 2016. “Situating the Default-Mode Network along a Principal Gradient of Macroscale Cortical Organization.” Proceedings of the National Academy of the Sciences USA 113 (44):12574–79. https://doi.org/10.1073/pnas.1608282113 CrossRefGoogle ScholarPubMed
Martin, Kevan A. 1994. “A Brief History of the ‘Feature Detector.’Cerebral Cortex 4 (1):17. https://doi.org/10.1093/cercor/4.1.1 CrossRefGoogle ScholarPubMed
Maturana, Humberto R. 1959. “Number of Fibres in the Optic Nerve and the Number of Ganglion Cells in the Retina of Anurans.” Nature 183 (4672):1406–7. https://doi.org/10.1038/1831406b0 CrossRefGoogle ScholarPubMed
Maturana, Humberto R., Lettvin, Jerome Y., McCulloch, Warren S., and Pitts, Walter H. 1960. “Anatomy and Physiology of Vision in the Frog (Rania Pipiens).” Journal of General Physiology 43 (6):129–75. https://doi.org/10.1085/jgp.43.6.129 CrossRefGoogle Scholar
Raichle, Marcus E., Ann Mary MacLeod, Abraham Z. Snyder, William J. Powers, Debra A. Gusnard, and Shulman, Gordon L.. 2001. “A Default Mode of Brain Function.” Proceedings of the National Academy of the Sciences USA 98 (2):676–82. https://doi.org/10.1073/pnas.98.2.676 CrossRefGoogle ScholarPubMed
Raichle, Marcus E., and Snyder, Abraham Z. 2007. “A Default Mode of Brain Function: A Brief History of an Evolving Idea.” NeuroImage 37 (4):1083–90. https://doi.org/10.1016/j.neuroimage.2007.02.041 CrossRefGoogle ScholarPubMed
Rheinberger, Hans-Jörg. 1997. Towards a History of Epistemic Things: Synthesizing Proteins in the Test Tube, 1947–1961. Stanford, CA: Stanford University Press.Google Scholar
Robins, Sarah. 2018. “Memory and Optogenetic Intervention: Separating the Engram from the Ecphory.” Philosophy of Science 85 (5):1078–89. https://doi.org/10.1086/699692 CrossRefGoogle Scholar
Shamay-Tsoory, Simone G., and Avi Mendelsohn, A. 2019. “Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research.” Perspectives in Psychological Science 14 (5):841–59. https://doi.org/10.1177/1745691619856350 CrossRefGoogle ScholarPubMed
Shulman, G. L., Fiez, Julie A., Maurizio Corbetta, Randy L. Buckner, Francis M. Miezin, Marcus E. Raichle, and Petersen, Steven E.. 1997. “Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex.” Journal of Cognitive Neuroscience 9 (5):648–63. https://doi.org/10.1162/jocn.1997.9.5.648 CrossRefGoogle ScholarPubMed
Silva, Alcina, Landreth, Antohny and Bickle, John 2014. Engineering the Next Revolution in Neuroscience: The New Science of Experiment Planning. Oxford: Oxford University Press.Google Scholar
Silva, Alcina J., Charles, F. Stevens, Susumu Tonegawa and Wang, Yanyan. 1992a. “Deficient Hippocampal Long-Term Potentiation in α-Calcium-Calmodulin Kinase II Mutant Mice.” Science 257 (5067):201–6. https://doi.org/10.1126/science.1378648 CrossRefGoogle ScholarPubMed
Silva, Alcina J., Paylor, Richard, Jeanne Wehner, J. M., and Tonegawa, Susumu. 1992b. “Impaired Spatial Learning in α-Calcium-Calmodulin Kinase II Mutant Mice.” Science 257 (5067):206–11. https://doi.org/10.1126/science.1321493 CrossRefGoogle ScholarPubMed
Steinle, Friedrich. 1997. “Entering New Fields: Exploratory Uses of Experimentation.” Philosophy of Science 64 (Proceedings):S65S74. https://doi.org/10.1086/392587 CrossRefGoogle Scholar
Steinle, Friedrich. 2016. Exploratory Experiments: Ampère, Faraday, and the Origins of Electrodynamics. Trans. Levine, Alex. Pittsburgh: Pittsburgh University Press.CrossRefGoogle Scholar
Sullivan, Jacqueline 2009. “The Multiplicity of Experimental Protocols: A Challenge to Reductionist and Non-Reductionist Models of the Unity of Neuroscience.” Synthese 167 (3):511–39. https://doi.org/10.1007/s11229-008-9389-4 CrossRefGoogle Scholar
Thagard, Paul. 1992. Conceptual Revolutions. Princeton: Princeton University Press.CrossRefGoogle Scholar
Tinbergen, Nikolaas. 1948. “Social Releasers and the Experimental Method Required for Their Study.” The Wilson Bulletin 60 (1):651.Google Scholar
Wilson, Donald M. 1961. “The Central Nervous Control of Flight in a Locust.” Journal of Experimental Biology 38 (2):471–90. https://doi.org/10.1242/jeb.38.2.471 CrossRefGoogle Scholar