Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T16:27:02.608Z Has data issue: false hasContentIssue false

Between the Fundamental and the Phenomenological: The Challenge of ‘Semi-Empirical’ Methods

Published online by Cambridge University Press:  01 April 2022

Jeffry L. Ramsey*
Affiliation:
Department of Philosophy, Oregon State University
*
Send reprint requests to the author, Department of Philosophy, Oregon State University, Corvallis, OR 97331-3902.

Abstract

Philosophers disagree how abstract, theoretical principles can be applied to instances. This paper generates a puzzle for law theorists, causal theorists and inductivists alike. Intractability can force scientists to use a “semi-empirical” method, in which some of an equation's theoretically-determinable parameters are replaced with values taken directly from the data. This is not a purely deductive or inductive process, nor does it involve causes and capacities in any simple way (Humphreys 1995). I argue the predictive successes of such methods require us to reanalyze our views about the nature of prediction, the status of models, and the goal(s) of science. When laws and experimental evidence are neither individually nor jointly sufficient for prediction, models become the locus of understanding. I analyze an historically important debate about the use of semi-empirical methods to construct potential energy surfaces.

Type
Research Article
Copyright
Copyright © Philosophy of Science Association 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This is a much altered version of a chapter in my dissertation. Many thanks to Bill Wimsatt, Steve Berry, and Dan Garber for help on the original version. Earlier versions of this essay were delivered to the Joint Workshop of the Conceptual Foundations of Science and the Fishbein Center for the History of Science and Medicine at the University of Chicago, the Department of Philosophy at Rice University, and the History of Science Lunch Bunch at Oregon State University. Thanks to members of all these audiences for helpful and stimulating comments. Some revisions were completed while I was a post-doctoral fellow at the Minnesota Center for the Philosophy of Science. Support for that fellowship was provided by a Research Training Grant from the National Science Foundation. I am indebted to Ron Giere, Paul Humphreys, Mary Jo Nye, and two anonymous referees for criticisms and comments.

References

Achinstein, P. (1991), Particles and Waves: Historical Essays in the Philosophy of Science. New York: Oxford University Press.Google Scholar
Bacon, F. (1620), Novum Organum. English translation in R. L. Ellis and J. Spedding (eds.), The Philosophical Works of Francis Bacon. London: Routledge 1905, pp. 212387.Google Scholar
Balint-Kurti, G. G. (1975), “Potential Energy Surfaces for Chemical Reactions”, Advances in Chemical Physics 30: 137179.Google Scholar
Bechtel, W. and Richardson, R. (1993), Discovering Complexity. Princeton: Princeton University Press.Google Scholar
Bodenstein, M. and Jung, G. (1926), “Die Dissoziation der Wasserstoffmolekul”, Zeitschrift für physikalische Chemie 121: 127135.CrossRefGoogle Scholar
Boehm, E. and Bonhoeffer, K. F., (1926), “Über die Gasreaktionen des activen Wasserstoffs”, Zeitschrift für physikalische Chemie 119: 385399.CrossRefGoogle Scholar
Bruenger, A. T. and Karplus, M. (1991), “Molecular Dynamics Simulations with Experimental Restraints”, Accounts of Chemical Research 24: 5461.CrossRefGoogle Scholar
Cartwright, N. (1983), How the Laws of Physics Lie. Oxford: Clarendon Press.CrossRefGoogle Scholar
Chladil, M. A. and Nunez, M. (1995), “Assessing grassland moisture and biomass in Tasmania”, International Journal of Wildland Fire 5: 165171.CrossRefGoogle Scholar
Collins, R. (1994), “Against the Epistemic Value of Prediction over Accommodation”, Noûs 28: 210224.CrossRefGoogle Scholar
Coolidge, A. S. and James, H. M. (1934), “The Approximations Involved in Calculations of Atomic Interaction and Activation Energies”, Journal of Chemical Physics 2: 811817.CrossRefGoogle Scholar
Coulson, C. (1961), Valence, 2nd ed. New York: Oxford University Press.Google Scholar
Dewar, M. J. S. (1973), “The Role of Semi-empirical SCF MO Methods”, in Price, W., Chissick, S., and Ravensdale, T. (eds.), Wave Mechanics: The First Fifty Years. New York: John Wiley and Sons, pp. 239254.Google Scholar
Dewar, M. J. S. (1992), A Semi-Empirical Life. Washington, D.C.: American Chemical Society.Google Scholar
Dopita, M. A. et al. (1996), “Hubble Space Telescope observations of planetary nebulae in the Magellanic Clouds. IV. Images and evolutionary ages”, Astrophysical Journal 460: 320333.CrossRefGoogle Scholar
Dorling, J. (1973), “Henry Cavendish's Deduction of the Electrostatic Inverse Square Law from the Result of a Single Experiment”, Studies in History and Philosophy of Science 4: 327348.CrossRefGoogle Scholar
Dupre, J. (1993), The Disorder of Things. Cambridge, MA: Harvard University Press.Google Scholar
Eyring, H. (1931), “The Energy of Activation for Bimolecular Reactions Involving Hydrogen and the Halogens, According to the Quantum Mechanics”, Journal of the American Chemical Society 53: 25372549.CrossRefGoogle Scholar
Eyring, H. and Polanyi, M. (1931), “Über einfache Gasreaktionen”, Zeitschrift für physikalische Chemie B12: 279311.Google Scholar
Farkas, A. (1930), “Über die thermische Parawasserstoffumwandlung”, Zeitschrift für physikalische Chemie B10: 419433.CrossRefGoogle Scholar
Feyerabend, P. (1978), Against Method. London: Verso Press.Google Scholar
Fisher, V. et al. (1996), “Electron-impact excitation cross sections for allowed transitions in atoms”, Physical Review A 53: 24252432.CrossRefGoogle Scholar
Foucaut, J. M. and Stanislas, M. (1996), “Take-off threshold velocity of solid particles lying under a turbulent boundary layer”, Experiments in Fluids 20: 377382.CrossRefGoogle Scholar
Freed, K. (1995), “Building a Bridge between Ab Initio and Semiempirical Theories of Molecular Electronic Structure”, in Calais, J. L. and Kryachko, E. S. (eds.), Structure and Dynamics of Atoms and Molecules: Conceptual Trends. Boston: Kluwer Academic Publishers, pp. 2567.CrossRefGoogle Scholar
Giere, R. (1988), Explaining Science. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Gillies, D. (1993), Philosophy of Science in the Twentieth Century: Four Central Themes. Cambridge, MA: Blackwell Publishers.Google Scholar
Glasstone, S., Laidler, K., and Eyring, H. (1941), The Theory of Rate Processes. New York: McGraw Hill.Google Scholar
Glymour, C. (1980), Theory and Evidence. Princeton: Princeton University Press.Google Scholar
Guggenheim, E. A. (1938), untitled remarks in discussion, Transactions of the Faraday Society 34: 27.CrossRefGoogle Scholar
Guggenheim, E. A. and Weiss, J. (1938), “The Application of Equilibrium Theory to Reaction Kinetics”, Transactions of the Faraday Society 34: 5770.CrossRefGoogle Scholar
Hacking, I. (1983), Representing and Intervening. New York: Cambridge University Press.CrossRefGoogle Scholar
Handy, N. (1992), “Pople and Boys”, Chemistry in Britain 28: 709.Google Scholar
Heisenberg, W. (1948), “Zur statistischen Theorie der Turbulenz”, Zeitschrift für Physik 124: 628657.CrossRefGoogle Scholar
Heitler, W. and London, F. (1927), “Wechselwirkung neutraler Atome und homoeopolare Bindung nach der Quantummechanik”, Zeitschrift für Physik 44: 455472.CrossRefGoogle Scholar
Hempel, C. (1966), Philosophy of Natural Science. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Hirschfelder, J. (1941), “Semi-Empirical Calculations of Activation Energies”, Journal of Chemical Physics 9: 645653.CrossRefGoogle Scholar
Hirschfelder, J. (1966), “A Forecast for Theoretical Chemistry”, Journal of Chemical Education 43: 457463.CrossRefGoogle Scholar
Hirschfelder, J. (1982), “My Fifty Years of Theoretical Chemistry, I: Chemical Kinetics”, Berichte der Bunsengesellschaft für Physikalische Chemie 86: 349355.CrossRefGoogle Scholar
Hirschfelder, J. (1983), “My Adventures in Theoretical Chemistry”, Annual Reviews in Physical Chemistry 34: 129.CrossRefGoogle ScholarPubMed
Howson, C. (1991), “Fitting your Theory to the Facts: Probably Not Such a Bad Thing After All”, in Scientific Theories, in W. Savage (ed.), Minnesota Studies in the Philosophy of Science, vol. 14. Minneapolis: University of Minnesota Press, pp. 224244.Google Scholar
Humphreys, P. (1991), “Computer Simulations”, in Fine, A., Forbes, M., and Wessels, L. (eds.), PSA 1990, vol. 2. East Lansing, MI: Philosophy of Science Association, pp. 497506.Google Scholar
Humphreys, P. (1995), “Abstract and Concrete”, Philosophy and Phenomenological Research 55: 157161.CrossRefGoogle Scholar
Johansen, T. (1995), “Semi-empirical modelling of non-linear dynamical systems”, IEEE Colloquium on ‘Advances in Neural Networks for Control and Systems‘ 4: 78Google Scholar
Jug, K. (1996), “Extension of semiempirical methods to simulation of surfaces”, International Journal of Quantum Chemistry 58: 283295.3.0.CO;2-U>CrossRefGoogle Scholar
Kassel, L. (1928), “Kinetics of Homogeneous Gas Reactions”, in West, C. J. (ed.), Annual Survey of American Chemistry, vol. 4. Washington, D.C.: National Research Council, pp. 3041.Google Scholar
Kassel, L. (1932a), The Kinetics of Homogeneous Gas Reactions. New York: American Chemical Society.Google Scholar
Kassel, L. (1932b), “Kinetics of Homogeneous Gas Reactions”, in West, C. J. (ed.), Annual Survey of American Chemistry, vol. 7. Washington, D.C.: National Research Council, pp. 2637.Google Scholar
Kassel, L. (1933), “Kinetics of Homogeneous Gas Reactions”, in West, C. J. (ed.), Annual Survey of American Chemistry, vol. 8. Washington: National Research Council, pp. 2638.Google Scholar
Kellert, S. (1993), In the Wake of Chaos. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Kline, R. (1987), “Science and Engineering Theory in the Invention and Development of the Induction Motor, 1880–1900”, Technology and Culture 28: 283313.CrossRefGoogle Scholar
Koehl, P. and Delarue, M. (1994), “Polar and nonpolar atomic environments in the protein core: Implications for folding and binding”, Proteins Structure Function and Genetics 20: 264278.CrossRefGoogle ScholarPubMed
Laitko, H. (1967), “Philosophische Fragen der Chemie. Einführung in die Problemsituation”, in Guntau, M. and Wendt, H. (eds.), Naturforschung und Weltbild. Berlin: VEB Deutscher Verlag der Wissenschaften, pp. 107137.Google Scholar
Leuning, R. (1995), “A critical appraisal of a combined stomatal-photosynthesis model for C-3 plants”, Plant Cell and Environment 18: 339355.CrossRefGoogle Scholar
Levine, I. (1978), Physical Chemistry. New York: McGraw-Hill.Google Scholar
Lins, L., Brasseur, R., and Malaisse, W. J. (1995), “Conformational analysis of the calcium complexes formed by meglitinide analogs”, Research Communications in Molecular Pathology and Pharmacology 90: 153164.Google ScholarPubMed
London, F. (1929), “Quantenmechanische Deutung des Vorgangs der Aktivierung”, Zeitschrift für Elektrochemie 35: 552555.Google Scholar
McMullin, E. (1984), “The Goals of Natural Science”, Proceedings and Addresses of the American Philosophical Association 58: 3762.CrossRefGoogle Scholar
Morse, P. M. (1930), “Diatomic Molecules according to the Wave Mechanics. II. Vibrational Levels”, Physical Review 34: 5764.CrossRefGoogle Scholar
Mulliken, R. (1975), “Introduction” to Part 7, in A. Ramsay and J. Hinze (eds.), Selected Papers of Robert S. Mulliken. Chicago: University of Chicago Press, pp. 875888.Google Scholar
Nicholson, M. D. and Hunt, G. J. (1995), “Measuring the availability to sediments and biota of radionuclides in wastes discharged to the sea”, Journal of Environmental Radioactivity 28: 4356.CrossRefGoogle Scholar
Nickles, T. (1989), “Truth or Consequences? Generative Versus Consequential Justification in Science”, in Fine, A. and Leplin, J. (eds.), PSA 1988, vol. 2. East Lansing, MI: Philosophy of Science Association, pp. 393405.Google Scholar
Nye, M. J. (1993), From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines 1800–1950. Berkeley: University of California Press.Google Scholar
Oliveira, M. and Santos, M. (1995), “A semi-empirical method to estimate canopy leaf area of vineyards”, American Journal of Enology and Viticulture 46: 389391.Google Scholar
O'Neill, L. (1993), “Peirce and the Nature of Evidence”, Transactions of the Charles S. Peirce Society 29: 211224.Google Scholar
Pelzer, H. and Wigner, E. (1932), “Über die Geschwindigskeitkonstante von Austauschreaktionen”, Zeitschrift für physikalische Chemie B15: 445471.CrossRefGoogle Scholar
Polanyi, M. (1938), untitled remarks in discussion, Transactions of the Faraday Society 34: 28.CrossRefGoogle Scholar
Posse, P. and von Hoyningen-Huene, W. (1995), “Information about scattering properties and particle characteristics of a stratiform cloud at Helgoland by remote optical measurements”, Contributions to Atmospheric Physics 68: 359366.Google Scholar
Redhead, M. (1980), “Models in Physics”, British Journal for the Philosophy of Science 31: 145163.CrossRefGoogle Scholar
Rice, O. K. (1930), “Kinetics of Homogeneous Gas Reactions”, in West, C. J. (ed.), Annual Survey of American Chemistry, vol. 5. Washington, D.C.: National Research Council, pp. 2135.Google Scholar
Rice, O. K. (1931), “Kinetics of Homogeneous Gas Reactions”, in West, C. J. (ed.), Annual Survey of American Chemistry, vol. 6. Washington, D.C.: National Research Council, pp. 2336.Google Scholar
Rice, O. K. (1934), “Kinetics of Homogeneous Gas Reactions”, in West, C. J. (ed.), Annual Survey of American Chemistry, vol. 9. Washington, D.C.: National Research Council, pp. 3548.Google Scholar
Scerri, E. (1992), “Deducing Answers”, Chemistry in Britain 28: 986.Google Scholar
Schaffner, K. (1993), Discovery and Explanation in Biology and Medicine. Chicago: University of Chicago Press.Google Scholar
Shimony, A. (1989), “The Non-Existence of a Principle of Natural Selection”, Biology and Philosophy 4: 255273.CrossRefGoogle Scholar
Shimura, M., Hirota, F., and Yagi, T. (1994), “Functional sites of cytochrome c and other electron carrier proteins”, Biochimie 76: 614621.CrossRefGoogle ScholarPubMed
Slater, J (1930), “Atomic Shielding Constants”, Physical Review 36: 5764.CrossRefGoogle Scholar
Slater, J (1931), “Molecular Energy Levels and Valence Bonds”, Physical Review 38: 11091144.CrossRefGoogle Scholar
Suckling, C. J., Suckling, K., and Suckling, C. W. (1978), Chemistry through Models: Concepts and Applications of Modelling Chemical Science, Technology and Industry. Cambridge: Cambridge University Press.Google Scholar
Sugiura, Y. (1927), “Über die Eigenschaften der Wasserstoffmolekuels um Grundzustände”, Zeitschrift für Physik 45: 484492.CrossRefGoogle Scholar
von Weiszäcker, F. (1948), “Das Spektrum der Turbulenz bei grossen Reynoldsschen Zahlen”, Zeitschrift für Physik 124: 614627.CrossRefGoogle Scholar
Wheeler, A., Topley, B., and Eyring, H. (1936), “The Absolute Rates of Reaction of Hydrogen with the Halogens”, Journal of Chemical Physics 4: 178187.CrossRefGoogle Scholar
Wimsatt, W. (1992), “Golden Generalities and Co-opted Anomalies: Haldane vs. Muller and the Drosophila Group on the Theory and Practice of Linkage Mapping”, in Sarkar, S. (ed.), Fisher, Haldane, Muller and Wright: Founders of the Modern Mathematical Theory of Evolution. Dordrecht: Martinus-Nijhoff, pp. 107166.Google Scholar
Zacharias, M. and Hagerman, P. J. (1995), “Bulge-induced bends in RNA”, Journal of Molecular Biology 247: 486500.CrossRefGoogle ScholarPubMed
Zener, C. (1930), “Analytic Atomic Wave Functions”, Physical Review 36: 5156.CrossRefGoogle Scholar