Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T04:35:38.508Z Has data issue: false hasContentIssue false

Aligning Multiple Research Techniques in Cognitive Neuroscience: Why Is It Important?

Published online by Cambridge University Press:  01 January 2022

William Bechtel*
Affiliation:
University of California, San Diego
*
William Bechtel, Department of Philosophy, 0119, University of California, San Diego, CA 92093; [email protected].

Abstract

The need to align multiple experimental procedures and produce converging results so as to demonstrate that the phenomenon under investigation is real and not an artifact is a commonplace both in scientific practice and discussions of scientific methodology (Campbell and Stanley 1963; Wimsatt 1981). Although sometimes this is the purpose of aligning techniques, often there is a different purpose—multiple techniques are sought to supply different perspectives on the phenomena under investigation that need to be integrated to answer the questions scientists are asking. After introducing this function, I will illustrate it by considering three of the major techniques in cognitive neuroscience for linking cognitive function with neural structure.

Type
Research Article
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechtel, William (2000), “From Imaging to Believing: Epistemic Issues in Generating Biological Data”, in Creath, R. and Maienschein, J. (eds.), Biology and Epistemology. Cambridge: Cambridge University Press, 138163.Google Scholar
Bechtel, William, and Abrahamsen, Adele (2002), Connectionism and the Mind: Parallel Processing, Dynamics, and Evolution in Networks. Second Edition. Oxford: Blackwell.Google Scholar
Bechtel, William, and Richardson, Robert C. (1993), Discovering Complexity: Decomposition and Localization as Scientific Research Strategies. Princeton: Princeton University Press.Google Scholar
Broca, Paul (1861), “Remarque sur le siège de la faculté du langaage articulé; suivies d’ une observation d’ aphémie”, Remarque sur le siège de la faculté du langaage articulé; suivies d’ une observation d’ aphémie 6: 343357.Google Scholar
Brodmann, Korbinian ([1909]1994), Vergleichende Lokalisationslehre der Grosshirnrinde Translated by Garvey, L. J.. Leipzig: J. A. Barth.Google Scholar
Buckner, Randy L. (1996), “Beyond HERA: Contributions of Specific Prefrontal Brain Areas to Long-term Memory Retrieval”, Beyond HERA: Contributions of Specific Prefrontal Brain Areas to Long-term Memory Retrieval 3:149158.Google ScholarPubMed
Cabeza, Roberto, and Nyberg, Lars (2000), “Imaging Cognition II: An Empirical Review of 275 PET and fMRI studies”, Imaging Cognition II: An Empirical Review of 275 PET and fMRI studies 12:147.Google ScholarPubMed
Campbell, Donald T., and Stanley, Julian C. (1963), Experimental and Quasi-experimental Design for Research. Boston: Houghton Mifflin.Google Scholar
Carmichael, S. T., and Price, Joel L. (1994), “Architectonic Subdivision of the Orbital and Medial Prefrontal Cortex in the Macaque Monkey”, Architectonic Subdivision of the Orbital and Medial Prefrontal Cortex in the Macaque Monkey 346:366402.Google ScholarPubMed
Felleman, Daniel J., and van Essen, David C. (1991), “Distributed Hierarchical Processing in the Primate Cerebral Cortex”, Distributed Hierarchical Processing in the Primate Cerebral Cortex 1:147.CrossRefGoogle ScholarPubMed
Goldberg, M. E., and Robinson, D. L. (1980), “The Significance of Enhanced Visual Responses in Posterior Parietal Cortex”, The Significance of Enhanced Visual Responses in Posterior Parietal Cortex 3:503505.Google Scholar
Goldman-Rakic, Patricia S. (1987), “Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory”, in Brookhart, J. M., Mountcastle, V. B., and Geiger, S. R. (eds.), Handbook of Physiology: The Nervous System, Vol. 5. Bethesda, Maryland: American Physiological Society, 373417.Google Scholar
Gross, Charles G., Rocha-Miranda, C. E., and Bender, D. B. (1972), “Visual Properties of Neurons in Inferotemporal Cortex of the Macaque”, Visual Properties of Neurons in Inferotemporal Cortex of the Macaque 35:96111.Google ScholarPubMed
Hubel, David H. (1982), “Evolution of Ideas on the Primary Visual Cortex, 1955–1978: A Biased Historical Account”, Evolution of Ideas on the Primary Visual Cortex, 1955–1978: A Biased Historical Account 2:435469.Google ScholarPubMed
Hubel, David H., and Wiesel, Torsten N. (1962), “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex”, Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex 160:106154.Google ScholarPubMed
Hubel, David H., and Wiesel, Torsten N. (1968), “Receptive Fields and Functional Architecture of Monkey Striate Cortex”, Receptive Fields and Functional Architecture of Monkey Striate Cortex 195:215243.Google ScholarPubMed
Kuffler, Stephen W. (1953), “Discharge Patterns and Functional Organization of Mammalian Retina”, Discharge Patterns and Functional Organization of Mammalian Retina 16:3768.Google ScholarPubMed
Mundale, Jennifer (1998), “Brain Mapping”, in Bechtel, William and Graham, George (eds.), A Companion to Cognitive Science. Oxford: Basil Blackwell.Google Scholar
Nadel, Lynn (1994), “Multiple Memory Systems: What and Why, an Update”, in Schacter, Daniel L. and Tulving, Endel (eds), Memory Systems 1994. Cambridge, MA: MIT Press, 3963.Google Scholar
Nyberg, Lars, Cabeza, Roberto, and Tulving, Endel (1996), “PET Studies of Encoding and Retrieval: The HERA Model”, PET Studies of Encoding and Retrieval: The HERA Model 3:135148.Google ScholarPubMed
O’Keefe, John, and Nadel, Lynn (1978), The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.Google Scholar
O’Reilly, Randall C., and McClelland, James L. (1994), “Hippocampal Conjunctive Encoding, Storage and Recall: Avoiding a Tradeoff”, Hippocampal Conjunctive Encoding, Storage and Recall: Avoiding a Tradeoff 4:661682.Google Scholar
Petersen, Stephen E., and Fiez, Julie A. (1993), “The Processing of Single Words Studied with Positron Emission Tomography”, The Processing of Single Words Studied with Positron Emission Tomography 16:509530.Google ScholarPubMed
Petersen, Stephen E. and Fiez, Julie A., Fox, Peter T., Posner, Michael I., Mintun, Mark, and Raichle, Marcus E. (1988), “Positron Emission Tomographic Studies of the Cortical Anatomy of Single-word Processing”, Positron Emission Tomographic Studies of the Cortical Anatomy of Single-word Processing 331:585588.Google ScholarPubMed
Posner, Michael I., and Raichle, Marcus E. (1994), Images of Mind. San Francisco: Freeman.Google Scholar
Roediger, Henry L. III, Buckner, Randy L., and McDermott, Kathleen B. (1999), “Components of Processing”, in Foster, J. K. and Jelicic, M. (eds.), Memory: Systems, Process, or Function. Oxford: Oxford University Press, 3265.Google Scholar
Rolls, Edmund T., and Treves, Alessandro (1998), Neural Networks and Brain Function. Oxford: Oxford University Press.Google Scholar
Scoville, William B., and Milner, Brenda (1957), “Loss of Recent Memory after Bilateral Hippocampal Lesions”, Loss of Recent Memory after Bilateral Hippocampal Lesions 20:1121.Google ScholarPubMed
Squire, Larry, Ojemann, Jeffrey G., Miezin, Francis M., Petersen, Stephen E., Videen, Tom O., and Raichle, Marcus E. (1992), “Activation of the Hippocampus in Normal Humans: A Functional Anatomical Study of Memory”, Activation of the Hippocampus in Normal Humans: A Functional Anatomical Study of Memory 89:18371841.Google Scholar
Tulving, Endel, Kapur, S., Craik, Fergus I. M., Moscovitch, Morris, and Houle, S. (1994), “Hemispheric Encoding/Retrieval Asymmetry in Episodic Memory: Positron Emission Tomography Findings”, Hemispheric Encoding/Retrieval Asymmetry in Episodic Memory: Positron Emission Tomography Findings 91:20162020.Google ScholarPubMed
Ungerleider, Leslie G., and Mishkin, Morten (1982), “Two Cortical Visual Systems”, in Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior. Cambridge, MA: MIT Press, 549586.Google Scholar
van Essen, David C., and Gallant, Jack L. (1994), “Neural Mechanisms of Form and Motion Processing in the Primate Visual System”, Neural Mechanisms of Form and Motion Processing in the Primate Visual System 13:110.Google ScholarPubMed
Wimsatt, William C. (1981), “Robustness, Reliability, and Overdetermination in Science”, in Brewer, M. and Collins, B. (eds.), Scientific Inquiry and the Social Sciences. San Francisco: Jossey-Bass, 124163.Google Scholar
Zawidzki, Thadeus, and Bechtel, William (2002). “Gall’s Legacy Revisited: Decomposition and Localization in Cognitive Neuroscience”, in Erneling, Christina E. and Johnson, David M. (eds.), Mind as a Scientific Object: Between Brain and Culture. Oxford: Oxford University Press, (in press).Google Scholar
Zeki, Semir M. (1973), “Colour Coding of the Rhesus Monkey Prestriate Cortex”, Colour Coding of the Rhesus Monkey Prestriate Cortex 53:422427.Google ScholarPubMed
Zeki, Semir M. (1974), “Functional Organization of a Visual Area in the Posterior Bank of the Superior Temporal Sulcus of the Rhesus Monkey”, Functional Organization of a Visual Area in the Posterior Bank of the Superior Temporal Sulcus of the Rhesus Monkey 236:549573.Google ScholarPubMed