Published online by Cambridge University Press: 14 March 2022
Once upon a time the well-known paradoxes of quantum mechanics (one might even say the “traditional” paradoxes of quantum mechanics!—I refer here to paradoxes such as the Schrödinger cat and the Einstein-Podolsky-Rosen Paradox) seemed especially difficult because of the rather bizarre behavior of the wave packet under the von Neumann theory of measurement, to which behavior these paradoxical situations seemed to draw especial attention. Quite recently quantum theoretical accounts of the measurement process have been appearing which sidestep direct reference to such things as “contraction” of the wave packet (see, for example, Krips and Jauch). With this development it has become increasingly popular to take a “cool” approach to these paradoxes, arguing that the new approach to measurement provides a consistent, nonbizarre account of the physical situations and that the paradoxicality was due largely to intuitive blunders—even plausible intuitive blunders—accentuated (but also disguised) by the unfortunate features of the von Neumann approach to measurement. Both Krips and Jauch, for example, adopt this approach.