Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T00:15:46.814Z Has data issue: false hasContentIssue false

Unity for Kant’s Natural Philosophy

Published online by Cambridge University Press:  01 January 2022

Abstract

I uncover here a conflict in Kant’s natural philosophy. His matter theory and laws of mechanics are in tension. Kant’s laws are fit for particles but are too narrow to handle continuous bodies, which his doctrine of matter demands. To fix this defect, Kant ultimately must ground the Torque Law; that is, the impressed torque equals the change in angular momentum. But that grounding requires a premise—the symmetry of the stress tensor—that Kant denies himself. I argue that his problem would not arise if he had kept his early theory of matter as made of mass points, or “physical monads.”

Type
Research Article
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernoulli, D. 1746. “Nouveau problème de mécanique.” Mémoires de l’académie des sciences 1:5470.Google Scholar
Boltzmann, L. 1905. “Über die Grundprinzipien und Grundgleichungen der Mechanik.” In Populäre Schriften, vol. 2, 253307. Leipzig: Barth.Google Scholar
Bowen, R. 2010. Introduction to Continuum Mechanics for Engineers. Mineola, NY: Dover.Google Scholar
D’Arcy, P. 1752. “Problème de dynamique.” Histoire de l’académie royale des sciences pour les années 1749, 1752, 344–61.Google Scholar
Euler, L. 1744. “De communicatione motus in collisione corporum sese non directe percutientium.” Commentarii academiae scientiarum Petropolitanae 9:5076.Google Scholar
Euler, L. 1749. Scientia navalis. St. Petersburg: Academia Scientiarum.Google Scholar
Euler, L. 1751. “De motu corporum flexibilium.” In Opuscula varii argumenti, vol. 3, 88165. Berlin: Haude & Spener.Google Scholar
Euler, L. 1752. “Découverte d’un nouveau principe de mécanique.” Mémoires de l’académie des sciences 6:185217.Google Scholar
Euler, L. 1765. “Du mouvement de rotation des corps solides autour d’un axe variable.” Mémoires de l’académie des sciences 14:154–83.Google Scholar
Euler, L. 1765/1765. Theoria motus corporum solidorum seu rigidorum. 2 vols. Rostock: Röse.Google Scholar
Euler, L. 1766. “Recherches sur le mouvement de rotation des corps celestes.” Mémoires de l’académie des sciences 15:265309.Google Scholar
Euler, L. 1771. “Genuina principia doctrinae de statu aequilibrii et motu corporum tam perfecte flexibilium quam elasticorum.” Novi commentarii academiae scientiarum Petropolitanae 15:381413.Google Scholar
Euler, L. 1776a. “De gemina methodo tam aequilibrium quam motum corporum flexibilium determinandi.” Novi commentarii academiae scientiarum Petropolitanae 20:286303.Google Scholar
Euler, L. 1776b. “Nova methodus motum corporum rigidorum determinandi.” Novi commentarii academiae scientiarum Petropolitanae 20:208–38.Google Scholar
Friedman, M. 2013. Kant’s Construction of Nature. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gurtin, M. 1981. Introduction to Continuum Mechanics. New York: Academic Press.Google Scholar
Hamel, G. 1909. “Über die Grundlagen der Mechanik.” Mathematische Annalen 66:350–97.Google Scholar
Hjelmstad, K. 2005. Fundamentals of Structural Mechanics. New York: Springer.Google Scholar
Jaunzemis, W. 1967. Continuum Mechanics. New York: Macmillan.Google Scholar
Joos, G. 1934. Theoretical Physics. Trans. Freeman, I. M.. New York: Hafner.Google Scholar
Kant, I. 1911. “Metaphysische Anfangsgründe der Naturwissenschaft.” In Kant’s Gesammelte Schriften, vol. 4, 480557. Berlin: Reimer.Google Scholar
Kant, I. 1925. “Reflexionen zur Physik und Chemie.” In Kant’s Gesammelte Schriften, Vol. 14, ed. E. Adickes. Berlin: de Gruyter.Google Scholar
Kant, I. 1992. “Physical Monadology.” In I. Kant: Theoretical Philosophy, 1755–1770, ed. Walford, D. and Meerbote, R., 4866. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lagrange, J. L. 1762. “Application de la méthode précédente à la solution de différents problèmes de dynamique.” Miscellanea Taurinensia 2:196298.Google Scholar
Lagrange, J. L. 1763/1763. “Recherches sur la libration de la Lune.” In Oeuvres de Lagrange, ed. Serret, J.-A., 561. Paris: Gauthier-Villars.Google Scholar
Serret, J.-A. 1788. Méchanique analitique. Paris: Desaint.Google Scholar
Lange, M. 2011. “Why Do Forces Add Vectorially? A Forgotten Controversy in the Foundations of Classical Mechanics.” American Journal of Physics 79:380–88.CrossRefGoogle Scholar
Malvern, L. 1969. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Murdoch, A. I. 2012. Physical Foundations of Continuum Mechanics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Noll, W. 1973. “Lectures on the Foundations of Continuum Mechanics and Thermodynamics.” Archive for Rational Mechanics and Analysis 52:6292.CrossRefGoogle Scholar
Poisson, S. D. 1833. Traité de mécanique. 2nd ed., vol. 2. Paris: Bachelier.Google Scholar
Radelet de Grave, P. 1992. “L’importance accordée, au XVIIIe siècle, aux verités servant de base aux preuves de la mécanique.” In Les procedures de preuve sous le regard de l’historien des sciences et des techniques, ed. Simon, G., 7185. Lille: CRATS.Google Scholar
Smith, S. 2007. “Continuous Bodies, Impenetrability, and Contact Interactions.” British Journal for Philosophy of Science 58:503–38.CrossRefGoogle Scholar
Smith, S. 2013. “Kant’s Picture of Monads in the Physical Monadology.Studies in History and Philosophy of Science 44:102–11.CrossRefGoogle Scholar
Truesdell, C. 1968. “The Creation and Unfolding of the Concept of Stress.” In Essays in the History of Mechanics, 184238. New York: Springer.CrossRefGoogle Scholar
Truesdell, C. 1991. A First Course in Rational Continuum Mechanics. 2nd ed. Boston: Academic Press.Google Scholar
Wilson, M. 2013. “What Is ‘Classical Mechanics’ Anyway?” In The Oxford Handbook of Philosophy of Physics, ed. Batterman, R., 43106. Oxford: Oxford University Press.Google Scholar