Article contents
On the Theory of Measurement in Quantum Mechanical Systems
Published online by Cambridge University Press: 14 March 2022
Abstract
This paper is concerned with the description of the process of measurement within the context of a quantum theory of the physical world. It is noted that quantum mechanics permits a quasi-classical description (classical in the limited sense implied by the correspondence principle of Bohr) of those macroscopic phenomena in terms of which the observer forms his perceptions. Thus, the process of measurement in quantum mechanics can be understood on the quasi-classical level by transcribing from the strictly classical observables of Newtonian physics to their quasi-classical counterparts the known rules for the measurement of the former. The remaining physical problem is the delineation of the circumstances in which the correlation of a peculiarly quantum mechanical observable A with a classically measurable observable B can result in a significant measurement of A. This is undertaken within the context of quantum theory. The resulting clarification of the process of measurement has important implications relative to the philosophic interpretation of quantum mechanics.
- Type
- Research Article
- Information
- Copyright
- Copyright © 1959 by Philosophy of Science Association
Footnotes
National Science Foundation Postdoctoral Fellow, now at the Physics Department, Brook-haven National Laboratory, Upton, New York. The author would like to thank Prof. J. R. Oppenheimer and the Institute for Advanced Study for the hospitality accorded him during the course of this work, and the Physics Department at Brookhaven National Laboratory for support while this paper was written.
References
- 9
- Cited by