Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T02:06:39.488Z Has data issue: false hasContentIssue false

Intimate Connections: Symmetries and Conservation Laws in Quantum versus Classical Mechanics

Published online by Cambridge University Press:  01 January 2022

Abstract

In this article, I use a number of remarks made by Eugene Wigner to defend the claim that the nature of the connection between symmetries and conservation laws is different in quantum and in classical mechanics. In particular, I provide a list of three differences that obtain between the Hilbert space formulation of quantum mechanics and the Lagrangian formulation of classical mechanics. I also show that these differences are due to the fact that conservation laws are not the only consequence that symmetries have in quantum mechanics and to the fact that, in classical mechanics, the connection between symmetries and conservation laws does not always obtain.

Type
Physical Sciences
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

A version of this article was presented at the Universities of Cambridge and Oxford in the winter of 2015. I would like to thank Jeremy Butterfield and Chris Timpson for organizing these talks and the audience at these two events for their comments and suggestions. I would also like to thank Katherine Brading, Harvey Brown, Anjan Chakravartty, Don Howard, and Nicholas Teh for their feedback on previous versions of this article.

References

Bessel-Hagen, E. 1921. “Über die erhaltungssätze der elektrodynamik.” Mathematische Annalen 84:258–76.CrossRefGoogle Scholar
Brading, K. 2002. “Which Symmetry? Noether, Weyl, and Conservation of Electric Charge.” Studies in History and Philosophy of Modern Physics 33:322.CrossRefGoogle Scholar
Brading, K. 2005. “A Note on General Relativity, Energy Conservation, and Noether’s Theorems.” In The Universe of General Relativity, ed. Kox, Anne J. and Eisenstaedt, Jean, 125–35. Boston: Birkhauser.Google Scholar
Brading, K., and Brown, H. 2003. “Symmetries and Noether’s Theorems.” In Symmetries in Physics: Philosophical Reflections, ed. Brading, Katherine and Castellani, Elena, 89109. New York: Cambridge University Press.CrossRefGoogle Scholar
Brown, H., and Holland, P. 2004. “Dynamical versus Variational Symmetries: Understanding Noether’s First Theorem.” Molecular Physics 102:1133–39.Google Scholar
Butterfield, J. 2006. “On Symmetry and Conserved Quantities in Classical Mechanics.” In Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub, ed. Demopoulos, William and Pitowsky, Itamar, 89109. Dordrecht: Springer.Google Scholar
García Doncel, M., Hermann, A., Michel, L., and Pais, A. 1983. Symmetries in Physics, 1600–1980: Proceedings of the 1st International Meeting on the History of Scientific Ideas. Barcelona: Servei de publicacions de la Universitat Autónoma de Barcelona.Google Scholar
Noether, E. 1918. “Invariante variationsprobleme.” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235–57.Google Scholar
Olver, P. 1986. Applications of Lie Groups to Differential Equations. New York: Springer.CrossRefGoogle Scholar
Wigner, E. 1927a. “Berichtigung zu der arbeit: Einige folgerungen aus der Schrödingerchen theorie für die termstrukturen.” Zeitschrift für Physik 45:601–2.CrossRefGoogle Scholar
Wigner, E. 1927b. “Einige folgerungen aus der schrödingerchen theorie für die termstrukturen.” Zeitschrift für Physik 43:624–52.CrossRefGoogle Scholar
Wigner, E. 1927c. “Über nichtkombinierende terme in der neueren quantentheorie. erster teil.” Zeitschrift für Physik 40:492500.CrossRefGoogle Scholar
Wigner, E. 1927d. “Über nichtkombinierende terme in der neueren quantentheorie. ii. teil.” Zeitschrift für Physik 40:883–92.Google Scholar
Wigner, E. 1928. “Über die erhaltungssätze in der quantenmechanik.” Nachrichten der Gesellschaft de Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 375–81.Google Scholar
Wigner, E. 1949. “Invariance in Physical Theory.” Proceedings of the American Philosophical Society 93:521–26.Google ScholarPubMed
Wigner, E. 1954. “Conservation Laws in Classical and Quantum Physics.” Progress of Theoretical Physics 11:437–40.CrossRefGoogle Scholar
Wigner, E. 1959. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Trans. Griffin, J. Rev ed. New York: Academic Press.Google Scholar
Wigner, E. 1964a. “Events, Laws of Nature, and Invariance Principles.” Science 145:995–99.CrossRefGoogle Scholar
Wigner, E. 1964b. “Symmetry and Conservation Laws.” Proceedings of the National Academy of Sciences of the USA 51:956–65.CrossRefGoogle Scholar
Wigner, E. 1967. Symmetries and Reflections: Scientific Essays of Eugene P. Wigner. Bloomington: Indiana University Press.Google Scholar