No CrossRef data available.
Article contents
Reefs as the Centralizing Theme in an Undergraduate Invertebrate Paleontology Course
Published online by Cambridge University Press: 26 July 2017
Abstract
This course is designed so that topics in invertebrate paleontology are discussed in the context of reefs and their change through time. The goal is to help undergraduate students connect modern conservation issues with an enlightened appreciation of the fossil record. Using reefs as the centralizing theme of the course allows key concepts (invertebrate taxonomy and systematics, form and function, evolution, etc.) to be emphasized while exploring the importance of biogenic buildups—and communities that inhabited ecosystems adjacent to those “engines of evolution”—from the past to the present. Students who satisfactorily complete the course achieve seven main learning objectives: They 1) are intimately familiar with the fossil record of marine invertebrate life; 2) understand the evolutionary history of reefs and the ecological roles played by key reef-building invertebrates through time; 3) are able to engage in discussions about paleontological data published in the primary literature; 4) are knowledgeable about the value of paleontological evidence for shedding insights into the decline of ancient and living reefs; 5) gain experience working collaboratively and thinking outside-of-the-box to explore solutions to societal problems linked with the degradation of modern coral reefs; 6) improve scientific writing; and 7) develop a personal style for communicating scientific information to the general public. During classroom discussions, laboratories, a field trip, and museum visit, students explore the anatomy, ecology, evolutionary history, and life-sustaining ecosystem services of shelly animals and associated marine organisms that coexisted in reefs and adjacent habitats past and present. Evolutionary events, including the Cambrian “explosion,” mass extinctions, and gaps in reef existence, are linked to dramatic physical (tectonic) and climatic changes that occurred in Earth's past. Emphasizing evidence for the impact of global change on ancient reef communities alerts students to the value of paleontological data for predicting how modern reefs—and invertebrates living in interconnected marine ecosystems—will respond as the Sixth Extinction gains traction. That topic is the focus of an optional extended study (nine-day field trip offered in alternate years during spring break) of modern and Pleistocene reefs on San Salvador Island, Bahamas.
- Type
- Research Article
- Information
- Copyright
- Copyright © 2012 by The Paleontological Society