Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:17:26.719Z Has data issue: false hasContentIssue false

Experiments on the Settling of Gastropod and Bivalve Shells: Biostratinomic Implications

Published online by Cambridge University Press:  26 July 2017

Mary Anne McKittrick*
Affiliation:
Department of Geosciences, The University of Arizona, Tucson, Arizona 85721
Get access

Abstract

I measured the settling velocities and observed the settling behavior of sixteen molluscan species from Bahia la Choya. Bivalve shells stabilize in a concave-up fall position, and exhibit slower settling velocities than gastropod shells of similar weight and volume. Within individual species settling rates increase as the ratio of shell weight to maximum cross-sectional area increases. Five distinct fall-patterns occur: straight-fall, gliding, rotation, rocking, and oscillation.

Type
Research Article
Copyright
Copyright © 1987 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Allen, J.R.L. 1984a. Experiments on the settling, overturning and entrainment of bivalve shells and related models. Sedimentology, 31: 227250.Google Scholar
Allen, J.R.L. 1984b. Experiments on the terminal fall of bivalve molluscs loaded with sand trapped from a dispersion. Sedimentary Geology. 39: 197209.Google Scholar
Alexander, R.R. 1984. Comparative hydrodynamic stability of brachiopod shells on current-scoured arenaceous subtrates. Lethaia, 17: 1721.Google Scholar
Behrens, E. W., and Watson, R. L. 1969. Differential sorting of pelecypod valves in the swash zone. Journal of Sedimentary Petrology, 39: 1559–165.Google Scholar
Berthois, L. 1965. Recherches sur le comportement hydraulique des débris organogènes. Sedimentology, 5: 327342.CrossRefGoogle Scholar
Braithwaite, C.J.R. 1973. Settling behaviour related to sieve analysis of skeletal sands. Sedimentology, 20: 251262.Google Scholar
Futterer, E.K. 1978. Untersuchungen über die Sink- und Transport-Geschwindigkeit biogener Hartteile. Neues Jahrbuch Geologie und Paläontologie, Abhandlungen 155: 318359.Google Scholar
Krumbein, W.C. 1942. Settling-velocity and flume behavior of non-spherical particles. Transactions, American Geophysical Union, 32: 621632.Google Scholar
Lever, J. 1958. Quantitative beach research I. The “left-right phenomenon”: sorting of lamelllibranch valves on sandy beaches. Basteria, 22: 2151.Google Scholar
Maiklem, W.C. 1968. Some hydraulic properties of bioclastic carbonate grains. Sedimentology, 10: 101109.CrossRefGoogle Scholar
Mehta, A.J., Lee, J., and Christensen, B.A. 1980. Fall velocity of shells as coastal sediment. Journal Hydraulic Division American Society Civil Engineering, 106: 17271744.Google Scholar
Menard, H.W. and Boucot, A.J. 1951. Experiments on the movement of shells by water. American Journal of Science, 249: 131151.Google Scholar
Nagle, J.S. 1967. Wave and current orientation of shells. Journal of Sedimentary Petrology. 37: 11241138.Google Scholar
Rubey, W.W. 1933. Settling velocities of gravel, sand, and silt particles: American Journal of Science, 25: 325338.Google Scholar
Schmiedel, J. 1928. Experimentelle Untersuchungen über die Fallbewegung von Kugeln und Scheiben in reibenden Flüssigkeiten. Physikalische Zeitschrift, 29: 593610.Google Scholar
Wadell, H., 1934. The coefficient of resistance as a function of Reynolds number for solids of various shapes: Journal of the Franklin Institute, 217: 459490.Google Scholar
Willmarth, W.W., Hawk, N.E., Harvey, R.L. 1964. Steady and unsteady motions and wakes of freely falling disks: The Physics of Fluids, 7: 197208.Google Scholar