Trophic diversity within guilds of terrestrial predators is explored in three modern and two ancient communities. The modern communities span a range of environments including savannah, rainforest, and temperate forest. The paleocommunities are North American, Orellan (31–29 Ma), and late Hemphillian (7–6 Ma), respectively. The predator guilds are compared in terms of: 1) species richness; 2) the array of feeding types; and 3) the extent of morphological divergence among sympatric species. Feeding type is determined from dental measurements that reflect the proportion of meat, bone, and non-vertebrate foods in the diet. Measurements include estimates of canine shape, tooth size, cutting blade length, and grinding molar area. Morphological divergence among sympatric predators is measured by calculating Euclidean distances among species in a six-dimensional morphospace. Results indicate that the number of predator and prey species are roughly correlated in both ancient and modern communities. Two of the predator guilds, the late Hemphillian and modern Yellowstone, contain relatively few species and appear to be the result of extinction without replacement. Despite differences in history, age, and environment, the extent of morphological divergence within guilds does not differ significantly for the sampled communities. It is clear that the basic pattern of adaptive diversity in dental morphology among coexisting carnivores was established at least 32 million years ago. It appears that interspecific competition for food has acted similarly to produce adaptive divergence among sympatric predators in communities that differ widely in time, space, and taxonomic composition.