Being of especially high quality, the Neogene fossil record of planktonic foraminifera offers special opportunities for assessing patterns of extinction and speciation. A variety of metrics indicates that within this group the mean duration of lineages has been much shorter (rate of extinction has been higher) for the globorotaliid clade than for the globigerinid clade. Furthermore, in the globorotaliid clade rates of extinction and speciation have not been closely linked to changes in diversity, but rather have been relatively high even at times when diversity has undergone little change. Thus, the globorotaliid clade has undergone more rapid evolutionary turnover than the globigerinid clade. Data for living species reveal that neither geographic range nor temperature tolerance is the primary factor controlling lineage duration. On the other hand, there is evidence that lineages marked by low abundance (small population size) are relatively short-lived. The reason that globorotaliid lineages have generally survived for shorter intervals, on the average, may be that their populations have been less abundant and less stable. Usually they live deeper in the water column, where food is often sparse, and many flourish only in areas of upwelling. Furthermore, the globorotaliids lack symbiotic algae for nutritional support. The same ecological factors may have accelerated speciation in the globorotaliid clade, by causing species to be patchily distributed. Thus, population size and structure have been more important than geographic range in determining rates of extinction and speciation. This parallels the situation for Neogene marine bivalves.
For planktonic foraminifera, as for Western Atlantic Bivalvia, the normal pattern of extinction was reversed in late Pliocene time, apparently in response to climatic cooling. The globigerinids suffered a sudden pulse of extinction. The deeper dwelling globorotaliids fared better; probably many of their species benefited from elevation of the seasonal thermocline into the photic zone. At the same time, rate of speciation declined in the globorotaliid clade, which supports the idea, inferred from the evolutionary history of marine bivalves, that an increase in the size and stability of populations should depress both rate of extinction and rate of speciation.