Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T23:25:47.980Z Has data issue: false hasContentIssue false

Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary

Published online by Cambridge University Press:  08 April 2016

Nina R. Bonis
Affiliation:
Laboratory of Palaeobotany and Palynology, Palaeoecology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
Wolfram M. Kürschner*
Affiliation:
Laboratory of Palaeobotany and Palynology, Palaeoecology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
*
Corresponding author.

Abstract

High-resolution palynological data sets from shallow marine Triassic-Jurassic (Tr/J) boundary beds of two principal sections in Europe (Hochalplgraben in Austria and St. Audrie's Bay in the United Kingdom) were analyzed to reconstruct changes in vegetation, biodiversity, and climate. In Hochalplgraben, a hardwood gymnosperm forest with conifers and seed ferns is replaced by vegetation with dominant ferns, club mosses and liverworts, which concurs with an increased diversification of spore types during the latest Rhaetian. Multivariate statistical analysis reveals a trend to warmer and wetter conditions across the Tr/J boundary in Hochalplgraben. The vegetation changes in St. Audrie's Bay are markedly different. Here, a mixed gymnosperm forest is replaced by monotonous vegetation consisting mainly of Cheirolepidiaceae (80–100%). This change is caused by a transition to a warmer and more arid climate. The observed diversity decrease in St. Audrie's Bay affirms this interpretation. Although both sections show major vegetation changes, neither of them demonstrates a distinctive floral mass extinction. A compilation of Tr/J boundary sections across the world demonstrates the presence of Cheirolepidiaceae-dominated forests in the Pangaean interior and increases in abundance of spore-producing plants adjacent to the Tethys Ocean. We propose that the non-uniform vegetation changes reflected in the Tr/J palynological records are the result of environmental changes caused by Central Atlantic Magmatic Province volcanism. The increase in greenhouse gases caused a warmer climate and an enhanced thermal contrast between the continent and the seas. Consequently, the monsoon system got stronger and induced a drier continental interior and more intensive rainfall near the margins of the Tethys Ocean.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbink, O. 1998. Palynological investigations in the Jurassic of the North Sea region. LPP Contribution Series 8. Ph.D. thesis. Universiteit Utrecht, Utrecht.Google Scholar
Abbink, O. A., Van Konijnenburg-Van Cittert, J. H. A., and Visscher, H. 2004. A sporomorph ecogroup model for the Northwest European Jurassic–Lower Cretaceous: concepts and framework. Geologie en Mijnbouw/Netherlands Journal of Geosciences 83:1738.Google Scholar
Achilles, H. 1981. Die rhaetische und liassische Mikroflora Frankens. Palaeontographica, Abteilung B 179:186.Google Scholar
Adloff, M. C., Doubinger, J., Massa, D., and Vachard, D. 1985. Trias de Tripolitaine (Libye) nouvelles donnees biostratigraphiques et palynologiques. Revue de l'Institut Français du Pétrole 40.Google Scholar
Alvin, K. L. 1982. Cheirolepidiaceae: biology, structure and paleoecology. Review of Palaeobotany and Palynology 37:7198.Google Scholar
Balme, B. E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology 87:81323.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–42.Google Scholar
Barrón, E., Gomez, J. J., Goy, A., and Pieren, A. P. 2006. The Triassic-Jurassic boundary in Asturias (northern Spain): palynological characterisation and facies. Review of Palaeobotany and Palynology 138:187208.CrossRefGoogle Scholar
Batten, D. J. 1974. Waelden palaeoecology from the distribution of plant fossils. Proceedings of the Geologists' Association 85:433458.Google Scholar
Birks, H. J. B., and Line, J. M. 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:110.CrossRefGoogle Scholar
Boltovskoy, D. 1988. The range-through method and the first-last appearance data in paleontological surveys. Journal of Paleontology 62:157159.Google Scholar
Bomfleur, B., Kerp, H., Hötzel, S., Schneider, J., Schöner, R., and Viereck-Götte, L. 2008. The continental Triassic-Jurassic boundary sequence in North Victoria Land, Antarctica. Terra Nostra 2008/2 IPC-XII/IOPC-VIII Bonn, Germany 2008.Google Scholar
Bonis, N. R., Kürschner, W. M., and Krystyn, L. 2009. A detailed palynological study of the Triassic-Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Review of Palaeobotany and Palynology 156:376400.CrossRefGoogle Scholar
Bonis, N. R., Ruhl, M., and Kürschner, W. M. 2010a. Milankovitch-scale palynological turnover across the Triassic-Jurassic transition at St. Audrie's Bay, SW U.K. Journal of the Geological Society 167:877888.CrossRefGoogle Scholar
Bonis N. R, ., van Konijnenburgh-van Cittert, J. H. A., and Kürschner, W. M. 2010b. Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeography, Palaeoclimatology, Palaeoecology 295:146161.Google Scholar
Cirilli, S., Palliani, R. B., and Pontini, M. R. 1994. Palynostratigraphy and palynofacies of the late Triassic R. contorta facies in northern Apennines. II. The Monte Cetona Formation. Revue de Paleobiologie 13:319339.Google Scholar
Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N., Jourdan, F., Bellieni, G., Kontak, D., and Renne, P. R. 2009. Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): new stratigraphic constraints. Earth and Planetary Science Letters 286:514525.CrossRefGoogle Scholar
Cornet, B., and Traverse, A. 1975. Palynological contributions to the chronology and stratigraphy of the Hartford Basin in Connecticut and Massachusetts. Geoscience and man 11:133.Google Scholar
Cornet, B., and Waanders, G. 2006. Palynomorphs indicate Hettangian (early Jurassic) age for the middle Whitmore Point Member of the Moenave Formation, Utah and Arizona. New Mexico Museum of Natural History and Science Bulletin 37:390406.Google Scholar
Deenen, M. H. L., Ruhl, M., Bonis, N. R., Krijgsman, W., Kuerschner, W. M., Reitsma, M., and van Bergen, M. J. 2010. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters 291:113125.Google Scholar
de Jersey, N. J., and Raine, J. I. 1990. Triassic and earliest Jurassic miospores from the Murihiku Supergroup, New Zealand. New Zealand Geological Survey Paleontological Bulletin 62.Google Scholar
Dubiel, R. F., Totman Parrish, J., Parrish, J. M., and Good, S. C. 1991. The Pangaean megamonsoon: evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios 6:347370.CrossRefGoogle Scholar
Dybkjær, K. 1988. Palynological zonation and stratigraphy of the Jurassic section in the Gassum No. 1-borehole, Denmark. Danmarks Geologiske Unders⊘gelse serie A 21.CrossRefGoogle Scholar
Dybkjær, K. 1991. Palynological zonation and palynofacies investigation of the Fjerritslev Formation (Lower Jurassic- basal Middle Jurassic) in the Danish Subbasin. Danmarks Geologiske Unders⊘gelse serie A 30.CrossRefGoogle Scholar
Embry, A. F., and Suneby, L. B. 1994. The Triassic-Jurassic boundary in the Sverdrup Basin, Arctic Canada. Canadian Society of Petroleum Geologists Memoir 17:857868.Google Scholar
Fowell, S. J., and Olsen, P. E. 1993. Time calibration of Triassic/Jurassic microfloral turnover, eastern North America. Tectonophysics 222:361369.Google Scholar
Fowell, S. J., and Traverse, A. 1995. Palynology and age of the upper Blomidon Formation, Fundy basin, Nova Scotia. Review of Palaeobotany and Palynology 86:211233.Google Scholar
Fowell, S. J., Cornet, B., and Olsen, P. E. 1994. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. InKlein, G. D., ed. Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geological Society of America Special Paper 288:197206.Google Scholar
Frakes, L. A. 1979. Climates throughout geologic time. Elsevier, Amsterdam.Google Scholar
Frakes, L. A., Francis, J. E., and Syktus, J. I. 1992. Climate modes of the Phanerozoic: the history of the earth's climate over the past 600 million years. Cambridge University Press, Cambridge.Google Scholar
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J. O. 2007. Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291294.CrossRefGoogle Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M., Cirilli, S., and Weissert, H. 2007. Stratigraphy and palaeoenvironmental analysis of the Triassic-Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 244:5270.Google Scholar
Gómez, J. J., Goy, A., and Barrón, E. 2007. Events around the Triassic-Jurassic boundary in northern and eastern Spain: A review. Palaeogeography, Palaeoclimatology, Palaeoecology 244:89110.Google Scholar
Götz, A. E., Ruckwied, K., Pálfy, J., and Haas, J. 2009. Palynological evidence of synchronous changes within the terrestrial and marine realm at the Triassic/Jurassic boundary (Csovár section, Hungary). Review of Palaeobotany and Palynology 156:401409.Google Scholar
Grice, K., Backhouse, J., Alexander, R., Marshall, N., and Logan, G. A. 2005. Correlating terrestrial signatures from biomarker distributions, δ13C, and palynology in fluvio-deltaic deposits from NW Australia (Triassic-Jurassic). Organic Geochemistry 36:13471358.CrossRefGoogle Scholar
Hallam, A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 35:144.Google Scholar
Hallam, A. 2002. How catastrophic was the end-Triassic mass extinction? Lethaia 35:147157.Google Scholar
Hallam, A., and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.Google Scholar
Hallam, A., and Wignall, P. B. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48:217250.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologica Electronica 4:9.Google Scholar
Hankel, O. 1987. Lithostratigraphic subdivision of the Karoo rocks of the Luwegu Basin (Tanzania) and their biostratigraphic classification based on microfloras, macrofloras, fossil woods and vertebrates. Geologische Rundschau 76:539565.Google Scholar
Hautmann, M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50:257261.CrossRefGoogle Scholar
Helby, R., Morgan, R., and Partridge, A. D. 1987. A palynological zonation of the Australian Mesozoic. InJell, P. A., ed. Studies in Australian Mesozoic palynology. Association of Australasian Palaeontologists Memoir 4:194.Google Scholar
Herngreen, G. F. W. 2005a. Jurassic and Cretaceous sporomorphs of NW Europe: taxonomy, morphology, ranges of marker species and zonation, with remarks on botanical relationship and ecology. TNO-NITG, Utrecht.Google Scholar
Herngreen, G. F. W. 2005b. Triassic sporomorphs of NW Europe: taxonomy, morphology, and ranges of marker species, with remarks on botanical relationship and ecology, and comparison with ranges in the Alpine Triassic. TNO-NITG, Utrecht.Google Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F., and Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30:251254.Google Scholar
Hesselbo, S. P., McRoberts, C. A., and Pálfy, J. 2007. Triassic-Jurassic boundary events: problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology 244:110.Google Scholar
Hochuli, P. A., and Vigran, J. O. 2010. Climate variations in the Boreal Triassic—inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 290:2042.Google Scholar
Hounslow, M. W., Posen, P. E., and Warrington, G. 2004. Magnetostratigraphy and biostratigraphy of the Upper Triassic and lowermost Jurassic succession, St. Audrie's Bay, U.K. Palaeogeography, Palaeoclimatology, Palaeoecology 213:331358.Google Scholar
Hubbard, R., and Boulter, M. C. 2000. Phytogeography and paleoecology in western Europe and eastern Greenland near the Triassic-Jurassic boundary. Palaios 15:120131.Google Scholar
Huynh, T. T., and Poulsen, C. J. 2005. Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 217:223242.Google Scholar
Jaramillo, C. A. 2002. Response of tropical vegetation to Paleogene warming. Paleobiology 28:222243.Google Scholar
Kelber, K.-P. 2005. Makroflora (Die Keuperfloren). InBeutler, G., Hauschke, N., Nitsch, E., and Vath, U., eds. Deutsche Stratigraphische Kommission, Stratigraphie von Deutschland. IV. Keuper. Courier Forschungsinstitut Senckenberg 253:3241.Google Scholar
Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P. J. 2007. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:201222.Google Scholar
Knight, K. B., Nomade, S., Renne, P. R., Marzoli, A., Bertrand, H., and Youbi, N. 2004. The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Earth and Planetary Science Letters 228:143160.Google Scholar
Koppelhus, E. B. 1997. Palynology of the lacustrine Kap Stewart Formation, Jameson Land, East Greenland. Danmark og Gr⊘nlands Geologiske Unders⊘gelse Rapport 1996/30, Appendix 5.Google Scholar
Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. M., and Spötl, C. 2009. Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic-Jurassic boundary sections in SW Britain. Journal of the Geological Society, London 166:431445.CrossRefGoogle Scholar
Kozur, H. W., and Weems, R. E. 2005. Conchostracan evidence for a late Rhaetian to early Hettangian age for the CAMP volcanic event in the Newark Supergroup, and a Sevatian (late Norian) age for the immediately underlying beds. Hallesches Jahrbuch für Geowissenschaften 27:2151.Google Scholar
Kürschner, W. M., and Herngreen, G. F. W. 2010. Triassic palynology of Central and Northwest-Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions. InLucas, S., ed. The Triassic timescale. Geological Society of London Special Publication 334:263283.Google Scholar
Kürschner, W. M., Bonis, N. R., and Krystyn, L. 2007. Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section—northern Calcareous Alps (Austria). Palaeogeography, Palaeoclimatology, Palaeoecology 244:257280.Google Scholar
Kutzbach, J. E., and Gallimore, R. G. 1989. Pangaean climates: megamonsoons of the megacontinent. Journal of geophysical research 94:33413357.Google Scholar
Lepš, J., and Šmilauer, P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.Google Scholar
Lézine, A., Watrin, J., Vincens, A., Hély, C., and contributors, . 2009. Are modern pollen data representative of west African vegetation? Review of Palaeobotany and Palynology 156:265276.Google Scholar
Lindström, S., and Erlström, M. 2006. The late Rhaetian transgression in southern Sweden: regional (and global) recognition and relation to the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 241:339372.Google Scholar
Lu, Y., and Deng, S. 2005. Triassic-Jurassic sporopollen assemblages on the southern margin of the Junggar Basin, Xinjiang and the T-J boundary. Acta Geologica Sinica 79:1527.Google Scholar
Lucas, S. G., and Tanner, L. H. 2008. Reexamination of the end-Triassic mass extinction. Pp. 66103inElewa, A. M. T., ed. Mass extinction. Springer, Berlin.Google Scholar
Lund, J. J. 1977. Rhaetic to Lower Liassic palynology of the onshore south-eastern North Sea Basin. Danmarks Geologiske Unders⊘gelse II RK 109:1129.Google Scholar
Lund, J. J. 2003. Rhaetian to Pliensbachian palynostratigraphy of the central part of the NW German Basin exemplified by the Eitzendorf 8 well. Courier Forschungsinstitut Senckenberg 241:6983.Google Scholar
Mander, L., Kürschner, W. M., and McElwain, J. C. 2010. An explanation for conflicting records of Triassic-Jurassic plant diversity. Proceedings of the National Academy of Sciences USA 107:1535115356.CrossRefGoogle ScholarPubMed
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and De Min, A. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284:616618.Google Scholar
Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Verati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., and Bellieni, G. 2004. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32:973976.Google Scholar
McElwain, J. C., and Punyasena, S. W. 2007. Mass extinction events and the plant fossil record. Trends in Ecology and Evolution 22:548557.Google Scholar
McElwain, J. C., Beerling, D. J., and Woodward, F. I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:13861390.CrossRefGoogle ScholarPubMed
McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M., and Surlyk, F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33:547573.Google Scholar
McElwain, J. C., Wagner, P. J., and Hesselbo, S. P. 2009. Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324:15541556.Google Scholar
Morbey, S. J. 1975. The palynostratigraphy of the Rhaetian stage, Upper Triassic in the Kendlbachgraben, Austria. Palaeontographica, Abteilung B 152:175.Google Scholar
Muir, M., and Van Konijnenburg-Van Cittert, J. H. A. 1970. A Rhaeto-Liassic flora from Ariel, northern France. Palaeontology 13:433442.Google Scholar
Mutti, M., and Weissert, H. 1995. Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy). Journal of Sedimentary Geology B 65:357367.Google Scholar
Olsen, P. E., Kent, D. V., Sues, H. D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E. C., Fowell, S. J., Szajna, M. J., and Hartline, B. W. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296:13051307.Google Scholar
Orlowska-Zwolinska, T. 1983. Palynostratigraphy of the upper part of Triassic epicontinental sediments in Poland (Palinostratygrafia epikontynentalnych osadow wyzszego triasu w Polsce). Prace Instytutu Geologicznego 104:189.Google Scholar
Palain, C., Doubinger, J., and Adloff, M. C. 1977. La base du Mésozoique du Portugal et les problèmes posés par la stratigraphie du Trias. Cuadernos Geologica Iberica 4:269280.Google Scholar
Parrish, J. T. 1993. Climate of the supercontinent Pangea. Journal of Geology 101:215233.Google Scholar
Pelánková, B., and Chytrý, M. 2009. Surface pollen–vegetation relationships in the forest-steppe, taiga and tundra landscapes of the Russian Altai Mountains. Review of Palaeobotany and Palynology 157:253265.Google Scholar
Quan, T. M., Van de Schootbrugge, B., Field, M. P., Rosenthal, Y., and Falkowski, P. G. 2008. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): evidence for redox variations across the Triassic-Jurassic boundary. Global Biogeochemical Cycles 22. doi:10.1029/2007GB002981.Google Scholar
Raine, J. I., Mildenhall, D. C., and Kennedy, E. M. 2005. New Zealand fossil spores and pollen: an illustrated catalogue. Institute of Geological and Nuclear Sciences Information Series 68.Google Scholar
Raunsgaard Pedersen, K.and Lund, J. J. 1980. Palynology of the plant-bearing Rhaetian to Hettangian Kap Atewart Formation, Scoresby Sund, East Greenland. Review of Palaeobotany and Palynology 31:169.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.Google Scholar
Rauscher, R., Hilly, J., Hanzo, M., and Marchal, C. 1995. Palynologie des couches de passage du Trias supérieur au Lias dans l'est du bassin Parisien: problèmes de datation du “Rhétien” de Lorraine. Sciences Géologiques Bulletin 48:159185.Google Scholar
Rees, P. M., Ziegler, A. M., and Valdes, P. J. 2000. Jurassic phytogeography and climates: new data and model comparisons. Pp. 297318inHuber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Reinhardt, L., and Ricken, W. 2000. The stratigraphic and geochemical record of Playa Cycles: Monitoring a Pangaean monsoon-like system (Triassic, Middle Keuper, S. Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 161:205227.Google Scholar
Rovnina, L. V. 1972. Stratigraphical separation of the continental deposits of the Triassic and Jurassic of the north-west of the West-Siberian Lowland. (Stratigraficheskoe raschlenenie kontinentalnykh otlozhenii triasa i yury severo-zapada zapadno-Sibirskoi nizmennosti). Ministry of the Oil Industry of the SSSR, Geology Institute for Management of Mineralogical Fuels. Academic Research SSSR 551.7:1–109, Moscow.Google Scholar
Ruckwied, K., and Götz, A. E. 2009. Climate change at the Triassic/Jurassic boundary: palynological evidence from the Furkaska section (Tatra Mountains, Slovakia). Geologica Carpathica 60:139149.Google Scholar
Ruhl, M., Kürschner, W. M., and Krystyn, L. 2009. Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth and Planetary Science Letters 281:169187.Google Scholar
Ruhl, M., Deenen, M. H. L., Abels, H. A., Bonis, N. R., Krijgsman, W., and Kürschner, W. M. 2010. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St. Audrie's Bay/East Quantoxhead, U.K.). Earth and Planetary Science Letters 295:262276.Google Scholar
Ruhl, M., Bonis, N. R., Reichart, G.-J., Sinninghe-Damsté, J. S., and Kürschner, W. M. 2011. Atmospheric Carbon injection linked to end-Triassic mass extinction. Science 333:430434.Google Scholar
Satterley, A. K. 1996. The interpretation of cyclic successions of the Middle and Upper Triassic of the Northern and Southern Alps. Earth-Science Reviews 40:181207.Google Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387390.Google Scholar
Schulz, E. 1967. Sporenpaläontologische Untersuchungen rätoliassischer Schichten im Zentralteil des Germanischen Beckens. Paläontologische Abhandlungen, Paläobotanik B 2:427633.Google Scholar
Schuurman, W. M. L. 1977. Aspects of late Triassic palynology. 2. Palynology of the “Grès et Schiste à Avicula contorta” and “Argiles de Levallois” (Rhaetian) of northeastern France and southern Luxemburg. Review of Palaeobotany and Palynology 23:159169.Google Scholar
Schuurman, W. M. L. 1979. Aspects of late Triassic palynology. 3. Palynology of latest Triassic and earliest Jurassic deposits of the northern limestone Alps in Austria and southern Germany, with special reference to a palynological characterization of the Rhaetian stage in Europe. Review of Palaeobotany and Palynology 27:5375.Google Scholar
Sellwood, B. W., and Valdes, P. J. 2007. Mesozoic climates. Pp. 201224inWilliams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., eds. Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. Micropalaeontological Society, TMS Special Publications, Geological Society, London.Google Scholar
Semenova, E. V. 1970. The spores and pollen of the Jurassic and the boundary layers of the Triassic of the Donbas Kiev.Google Scholar
Seuß, B., Höfling, R., and Nützel, A. 2005. Triassic/Jurassic carbonates from the Hochfelln Mountain (Northern Calcareous Alps)—its facies, silicified fauna and implications for the end-Triassic biotic crisis. Facies 51:405418.CrossRefGoogle Scholar
Stanley, G. D. 2003. The evolution of modern corals and their early history. Earth-Science Reviews 60:195225.Google Scholar
Tanner, L. H., and Lucas, S. G. 2007. The Moenave Formation: sedimentologic and stratigraphic context of the Triassic-Jurassic boundary in the Four Corners area, southwestern U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology 244:111125.Google Scholar
Tanner, L. H., Lucas, S. G., and Chapman, M. G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews 65:103139.Google Scholar
Traverse, A. 2007. Paleopalynology. Pp. 1831inLandman, N. H.and Jones, D. S., eds. Topics in geobiology. Springer, Dordrecht.Google Scholar
Vakhrameev, V. A. 1981. Pollen Classopollis: indicator of Jurassic and Cretaceous climates. Palaeobotanist 28–29:301307.Google Scholar
Vakhrameev, V. A. 1987. Climates and the distribution of some gymnosperms in Asia during the Jurassic and Cretaceous. Review of Palaeobotany and Palynology 51:205212.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the Earth. Cambridge University Press, Cambridge.Google Scholar
Van de Schootbrugge, B., Quan, T. M., Lindstrom, S., Puttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H. G., Richoz, S., Rosenthal, Y., and Falkowski, P. G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2:589594.Google Scholar
Van Veen, P. M. 1995. Time calibration of Triassic/Jurassic microfloral turnover, eastern North America—Comment. Tectonophysics 245:9395.Google Scholar
Vollmer, T., Werner, R., Weber, M., Tougiannidis, N., Röhling, H. G., and Hambach, U. 2008. Orbital control on Upper Triassic Playa cycles of the Steinmergel-Keuper (Norian): a new concept for ancient playa cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 267:116.Google Scholar
Von Hillebrandt, A., and Krystyn, L. 2009. On the oldest Jurassic ammonites of Europe (Northern Calcareous Alps, Austria) and their global significance. Neues Jahrbuch für Geologie und Paläontologie 253:163195.Google Scholar
Von Hillebrandt, A., Krystyn, L., and Kürschner, W. M. 2007. A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section; Karwendel Mountains, Tyrol, Austria). International Subcommission on Jurassic Stratigraphy Newsletter 34:220.Google Scholar
Warrington, G. 1974. Studies in the palynological biostratigraphy of the British Trias. I. Reference sections in west Lancashire and north Somerset. Review of Palaeobotany and Palynology 17:133147.Google Scholar
Warrington, G., Cope, J. C. W., and Ivimey-Cook, H. C. 1994. St. Audrie's Bay, Somerset, England: a candidate Global Stratotype Section and Point for the base of the Jurassic System. Geological Magazine 131:191200.Google Scholar
Warrington, G., Cope, J. C. W., and Ivimey-Cook, H. C. 2008. The St. Audrie's Bay–Doniford Bay section, Somerset, England: updated proposal for a candidate Global Stratotype Section and Point for the base of the Hettangian Stage, and of the Jurassic System. International Subcommission on Jurassic Stratigraphy Newsletter 35:266.Google Scholar
Watson, J. 1988. The Cheirolepidiaceae. Pp. 382447inBeck, C. B.ed. Origin and evolution of gymnosperms. Columbia University Press, New York.Google Scholar
Weng, C., Hooghiemstra, H., and Duivenvoorden, J. F. 2007. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes. Philosophical Transactions of the Royal Society of London B 362:253262.Google Scholar
Whiteside, J. H., Olsen, P. E., Kent, D. V., Fowell, S. J., and Et-Touhami, M. 2007. Synchrony between the Central Atlantic magmatic province and the Triassic-Jurassic mass-extinction event? Palaeogeography, Palaeoclimatology, Palaeoecology 244:345367.Google Scholar
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53:133.Google Scholar
Willis, K. J., and McElwain, J. C. 2002. The evolution of plants. Oxford University Press, Oxford.Google Scholar
Yaroshenko, O. P. 2007. Late Triassic palynological flora from western Ciscaucasia. Paleontological Journal 41:11901197.Google Scholar
Zhang, W., and Grant-Mackie, J. A. 2001. Late Triassic-Early Jurassic palynofloral assemblages from Murihiku strata of New Zealand, and comparisons with China. Journal of the Royal Society of New Zealand 31:575683.Google Scholar
Ziaja, J. 2006. Lower Jurassic spores and pollen grains from Odrowąż, Mesozoic margin of the Holy Cross Mountains, Poland. Acta Palaeobotanica 46:383.Google Scholar