Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:12:11.820Z Has data issue: false hasContentIssue false

Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology

Published online by Cambridge University Press:  08 April 2016

John R. Horner
Affiliation:
Museum of the Rockies, Montana State University, Bozeman, Montana 59717-0040. E-mail: [email protected]
Armand de Ricqlès
Affiliation:
Équipe Formations Squelettiques, URA CNRS 11 37, Université Paris VII, 75251 Paris cedex 05, France Collège de France, Paris, France
Kevin Padian
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720-3140

Abstract

Twelve different bones from the skeleton of the holotype specimen of the hadrosaurian dinosaur Hypacrosaurus stebingeri were thin-sectioned to evaluate the significance of lines of arrested growth (LAGs) in age assessments. The presence of an external fundamental system (EFS) at the external surface of the cortex and mature epiphyses indicate that the Hypacrosaurus specimen had reached adulthood and growth had slowed considerably from earlier stages. The number of LAGs varied from none in the pedal phalanx to as many as eight in the tibia and femur. Most elements had experienced considerable Haversian reconstruction that had most likely obliterated many LAGs. The tibia was found to have experienced the least amount of reconstruction, but was still not optimal for skeletochronology because the LAGs were difficult to count near the periosteal surface. Additionally, the numbers of LAGs within the EFS vary considerably around the circumference of a single element and among elements. Counting LAGs from a single bone to assess skeletochronology appears to be unreliable, particularly when a fundamental system exists.

Because LAGs are plesiomorphic for tetrapods, and because they are present in over a dozen orders of mammals, they have no particular physiological meaning that can be generalized to particular amniote groups without independent physiological evidence. Descriptions of dinosaur physiology as “intermediate” between the physiology of living reptiles and that of living birds and mammals may or may not be valid, but cannot be based reliably on the presence of LAGs.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Castenet, J., Meunier, F. J., and de Ricqlès, A. 1977. L'enregistrement de la croissance cyclique par le tissu osseux chez les Vertébrés poikilothermes: données comparatives et essai de synthèse. Bulletin Biologique de la France et Belgique 111:183202.Google Scholar
Castanet, J., Francillon-Vieillot, H., Meunier, F. J., and de Ricqlès, A. 1993. Bone and individual aging. Pp. 245283in Hall, B. K., ed. Bone, Vol. 7. Bone growth. CRC Press, London.Google Scholar
Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Paleontologia africana 27:7782.Google Scholar
Chinsamy, A. 1993. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Modern Geology 18:319329.Google Scholar
Chinsamy, A. 1994. Dinosaur bone histology: implications and inferences. In Rosenberg, G. D. and Wolberg, D. L., eds. DinoFest. Paleontological Society Special Publication 7:213227.Google Scholar
Chinsamy, A. 1995. Ontogenetic changes in the bone histology of the Late Jurassic ornithopod Dryosaurus lettowvorbecki. Journal of Vertebrate Paleontology 15:96104.CrossRefGoogle Scholar
Chinsamy, A., and Dodson, P. 1995. Inside a dinosaur bone. American Scientist 83:174180.Google Scholar
Chinsamy, A., Chiappe, L. M., and Dodson, P. 1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology 21:561574.Google Scholar
Chinsamy, A., Rich, T., and Vickers-Rich, P. 1998. Polar dinosaur bone histology. Journal of Vertebrate Paleontology 18:385390.Google Scholar
Cormack, D. 1987. Ham's histology. Lippincott, New York.Google Scholar
Currie, P. J., and Padian, K. 1997. Encyclopedia of dinosaurs. Academic Press, San Diego.Google Scholar
Curry, K. A. 1998. Histological quantification of growth rates in Apatosaurus. Journal of Vertebrate Paleontology 18(Suppl. 3):36A.Google Scholar
Curry, K. A.In press. Histological quantification of growth rates in Apatosaurus. Journal of Vertebrate Paleontology.Google Scholar
de Buffrénil, V. 1982. Données préliminaries sur la présence de lignes d'arret de croissance périostiques dans la mandibule du marouin commun, Phocoena phocoena (L.), et leur utilisation comme indicature de l'age. Canadian Journal Zoology 60:25572567.CrossRefGoogle Scholar
Dodson, P. 1974. Dinosaurs as dinosaurs. Evolution 28:494497.Google Scholar
Enlow, D. H., and Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissues, Part I. Texas Journal of Science 8:403443.Google Scholar
Enlow, D. H., and Brown, S. O. 1957. A comparative histological study of fossil and recent bone tissues, Part II. Texas Journal of Science 9:185214.Google Scholar
Enlow, D. H., and Brown, S. O. 1958. A comparative histological study of fossil and recent bone tissues, Part III. Texas Journal of Science 10:187230.Google Scholar
Eurell, J., and Sterchi, D. 1994. Microwavable toludine blue stain for surface staining of undecalcified bone sections. Journal of Histotechnology 17:357359.Google Scholar
Farlow, J. O. 1990. Dinosaur paleobiology: dinosaur energetics and thermal biology. Pp. 4355in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Francillon-Vieillot, H., Arntzen, J. W., and Geraudie, J. 1990. Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. Journal of Herpetology 24:1322.Google Scholar
Horner, J. R., and Currie, P. J. 1994. Embryonic and neonatal morphology and ontogeny of a new species of Hypacrosaurus (Ornithischia, Lambeosauridae) from Montana and Alberta. Pp. 312336in Carpenter, K., Hirsch, K. F., and Horner, J. R., eds. Dinosaur eggs and babies. Cambridge University Press, New York.Google Scholar
Horner, J. R., Padian, K., and de Ricqlès, A. 1997. Histological analysis of a dinosaur skeleton: evidence of skeletal growth variation. Journal of Morphology 232(3):267.Google Scholar
Horner, J. R., de Ricqlès, A., and Padian, K.In press. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology.Google Scholar
Klezeval', G. A., and Kleinenberg, S. E. 1967. Age determination of mammals from annual layers in teeth and bone. Akademiia Nauk SSSR, Institut Morpologii Zhivotnykh Im. A. N. Seversova, Izdatal'stov “Nauka,” Moscow. [Israel Program for Scientific Translations, Jerusalem, 1969].Google Scholar
Ostrom, J. H. 1980. The evidence for endothermy in dinosaurs. In Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs. American Association for the Advancement of Science Selected Symposium 28:1554. Westview Press, Boulder, Colo.Google Scholar
Padian, K. 1997a. Growth lines. Pp. 288291in Currie, and Padian, 1997.Google Scholar
Padian, K. 1997b. Physiology. Pp. 552557in Currie, and Padian, 1997.Google Scholar
Padian, K. 1998. When is a bird not a bird? Nature 393:729–30.Google Scholar
Peabody, F. E. 1961. Annual growth zones in vertebrates (living and fossil). Journal of Morphology 108:1162.Google Scholar
Reid, R. E. H. 1981. Lamellar-zonal bone with zones and annuli in the pelvis of a sauropod dinosaur. Nature 292:4951.Google Scholar
Peabody, F. E. 1990. Zonal “growth rings” in dinosaurs. Modern Geology 15:1948.Google Scholar
Peabody, F. E. 1993. Apparent zonation and slowed late growth in a small Cretaceous theropod. Modern Geology 18:391406.Google Scholar
Peabody, F. E. 1996. Bone histology of the Cleveland-Lloyd dinosaurs and of dinosaurs in general, Part I. Introduction: introduction to bone tissues. Brigham Young University Geology Studies 41:2572.Google Scholar
Peabody, F. E. 1997a. Histology of bones and teeth. Pp. 329339in Currie, and Padian, 1997.Google Scholar
Peabody, F. E. 1997b. How dinosaurs grew. Pp. 403413in Farlow, J. O. and Brett-Surman, M. K., eds. The complete dinosaur. Indiana University Press, Bloomington and Indianapolis.Google Scholar
Peabody, F. E. 1997c. Dinosaurian physiology: the case for “intermediate” dinosaurs. Pp. 449473in Farlow, J. O. and Brett-Surman, M. K., eds. The complete dinosaur. Indiana University Press, Bloomington and Indianapolis.Google Scholar
de Ricqlès, A. 1975. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. Pp. 123150in Bellairs, A. d'A. and Cox, C. B., eds. Morphology and biology of reptiles. Linnean Society Symposium, Series 3.Google Scholar
Ricqlès, A. de. 1976. Recherches paléohistogiques sur les os longs des Tétrapodes. VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des Tétrapodes. 2éme partie: fonctions. Annales de Paléontologie 62:71126.Google Scholar
de Ricqlès, A. 1979. Quelques remarques sur l'histoire évolutive des tissus squelettiques chez les Vertébrés et plus particulièrement chez les Tétrapodes. Annales de Biologie 18:135.Google Scholar
de Ricqlès, A. 1980. Tissue structures of dinosaur bone: functional significance and possible relation to dinosaur physiology. In Thomas, R. D. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs. AAAS Selected Symposium 28:103139. Westview Press, Boulder, Colo.Google Scholar
de Ricqlès, A. 1983. Cyclical growth in the long limb bones of a sauropod dinosaur. Acta Palaeontologia Polonica 28:225232.Google Scholar
de Ricqlès, A. 1992. Paleoherpetology now: a point of view. Pp. 97120in Adler, K. and Costello, D., eds. Herpetology: current research on the biology of amphibians and reptiles. Proceedings of the first world congress of herpetology (Canterbury, U.K.). Society for the Study of Amphibians and Reptiles, Oxford, Ohio.Google Scholar
Ricqlès, A. de, and Bolt, J. 1983. Jaw growth and tooth replacement in Captorhinus aguti (Reptilia, Captorhinomorpha): a morphological and histological analysis. Journal of Vertebrate Paleontology 3:724.CrossRefGoogle Scholar
Ricqlés, A. de, Meunier, F. J., Castanet, J., and Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Pp. 178in Hall, B. K., ed. Bone, Vol. 3. Bone matrix and bone specific products. CRC Press, Boca Raton, Fla.Google Scholar
Ricqlés, A. de, Padian, K., and Horner, J. R. 1997. Histological evidences of dinosaur growth patterns. In Rocek, Z. and Hart, S., eds. Third world congress of herpetology (Prague), Abstracts, p. 172.Google Scholar
Ricqlés, A. de, Horner, J. R., and Padian, K. 1998. Growth dynamics of the hadrosaurid dinosaur Maiasaura peeblesorum. Journal of Vertebrate Paleontology 18(Suppl. 3):72A.Google Scholar
Ricqlés, A. de, Padian, K., Horner, J. R., and Francillon-Vieillot, H.In press. Paleohistology of the bones of pterosaurs (Reptilia: Archosauria): anatomy, ontogeny, and biomechanical implications. Zoological Journal of the Linnean Society.Google Scholar
Rimblot-Baly, F., de Ricqlés, A., and Zylberberg, L. 1995. Analyse paléohistologique d'une série de croissance partielle chez Lapparentosaurus madagascariensis (Jurassique moyen): essai sur la dynamique de croissance d'un dinosaure sauropode. Annales de Paléontologie 81:4986.Google Scholar
Varricchio, D. J. 1993. Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus. Journal of Vertebrate Paleontology 13:99104.CrossRefGoogle Scholar
Wilson, J. W. 1994. Histological techniques. Pp. 205234in Leiggi, P. and May, P., eds. Vertebrate paleontological techniques, Vol. 1. Cambridge University Press, New York.Google Scholar