Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T17:47:13.466Z Has data issue: false hasContentIssue false

Variation and dynamics of a fossil antelope population

Published online by Cambridge University Press:  08 April 2016

Björn Kurtén*
Affiliation:
Department of Geology, University of Helsinki, SF-00170 Helsinki 17, Finland

Abstract

656 mandibles and isolated teeth of the bovid Pachytragus solignaci Robinson from two localities in the Miocene Beglia Formation, Gafsa, Tunisia, have been individually aged on the basis of ontogenetic development and state of dental wear. The sample probably represents normal but seasonally restricted mortality. Life table analysis indicates an annual mortality rate of 25–30%, increasing in old animals. Dental dimensions are affected by stabilizing selection which sets in as the tooth comes into function, earlier mortality being nonselective in that respect.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Biely, A., Rakus, M., Robinson, P., and Salaj, J. 1972. Essai de corrélation des formations Miocènes au sud de la Dorsale tunisienne. Notes Serv. Géol. Tunis. 38:7392.Google Scholar
Black, C. C. 1972. A new species of Merycopotamus (Artiodactyla: Anthracotheriidae) from the late Miocene of Tunisia. Notes Serv. Géol. Tunis. 37:539.Google Scholar
Ehrenberg, K. 1935. Die Pleistozaenen Baeren Belgiens, I–II. Mém. Mus. R. Hist. Nat. Belgique. 64:1126, 71:1–97.Google Scholar
Forsten, A. M. 1972. Hipparion primigenium from southern Tunisia. Notes Serv. Géol. Tunis. 35:728.Google Scholar
Greenwood, P. H. 1972. Fish fossils from the late Miocene of Tunisia. Notes Serv. Géol. Tunis. 37:4172.Google Scholar
Kurtén, B. 1953. On the variation and population dynamics of fossil and recent mammal populations. Acta Zool. Fenn. 76:1122.Google Scholar
Kurtén, B. 1958. Life and death of the Pleistocene cave bear. Acta Zool. Fenn. 95:159.Google Scholar
Kurtén, B. 1967. Some quantitative approaches to dental microevolution. J. Dental Res. 46:817828.Google Scholar
Kurtén, B. 1976. The Cave Bear Story. 163 pp. Columbia; New York.Google Scholar
Kurtén, B. 1978. Fossil Carnivora from the late Tertiary of Bled Douarah and Cherichira, Tunisia. Notes Serv. Géol. Tunis. 42:177214.Google Scholar
Loomis, F. B. 1910. Osteology and affinities of the genus Stenomylus. Am. J. Sci. 29:297323.CrossRefGoogle Scholar
Matthew, W. D. 1924. Third contribution to the Snake Creek fauna. Bull. Am. Mus. Nat. Hist. L:59210.Google Scholar
Robinson, P. 1972. Pachytragus solignaci, a new species of caprine bovid from the late Miocene Beglia Formation of Tunisia. Notes Serv. Géol. Tunis. 37:7394.Google Scholar
Robinson, P. and Black, C. C. 1974. Vertebrate faunas from the Neogene of Tunisia. Annu. Geol. Surv. Egypt. 4:319332.Google Scholar
Schlosser, M. 1921. Die Hipparionenfauna von Veles in Mazedonien. Abh. Bayer. Akad. Wiss. 29(4):155.Google Scholar
Simpson, G. G. and Roe, A. 1939. Quantitative Zoology. New York.Google Scholar
Van Valen, L. 1963. Selection in natural populations: Merychippus primus, a fossil horse. Nature. 197:11811183.Google Scholar
Van Valen, L. 1964. Age in two fossil horse populations. Acta Zool. 45:93106.Google Scholar
Voorhies, M. 1969. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Univ. Wyoming Contrib. Geol. Spec. Pap. 1:169.Google Scholar