Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T10:05:29.909Z Has data issue: false hasContentIssue false

Understanding the dynamics of trends within evolving lineages

Published online by Cambridge University Press:  08 February 2016

John Alroy*
Affiliation:
National Center for Ecological Analysis and Synthesis, University of California, 735 State Street, Santa Barbara, California 93101. E-mail: [email protected]

Extract

The study of evolutionary trends is one of the oldest and most intriguing topics in evolutionary biology and paleobiology (McNamara 1990). Workers since Cuvier, Lyell, and Owen have wanted to know if the fossil record demonstrates “progression” within temporal sequences of related organisms. Regardless of whether changes in the average values of morphological characters are progressive in any meaningful sense, these changes are still of great interest. In practice, questions about trends are most commonly framed by paleontologists in terms of “complexity” (however defined) or body size (McShea 1998a).

Type
Matters of the Record
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Arnold, A. J., Kelly, D. C., and Parker, W. C. 1995. Causality and Cope's rule—evidence from the planktonic Foraminifera. Journal of Paleontology 69:203210.CrossRefGoogle Scholar
Boyajian, G., and Lutz, T. 1992. Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology 20:983986.2.3.CO;2>CrossRefGoogle Scholar
Butler, M. A., and Losos, J. B. 1997. Testing for unequal amount of evolution in a continuous character on different branches of a phylogenetic tree using linear and squared-change parsimony: an example using Lesser Antillean Anolis lizards. Evolution 51:16231635.Google Scholar
Carlson, S. J. 1992. Evolutionary trends in the articulate brachiopod hinge mechanism. Paleobiology 18:344366.CrossRefGoogle Scholar
Dennis, B., and Taper, M. L. 1994. Density dependence in time series observations of natural populations—estimation and testing. Ecological Monographs 64:205224.CrossRefGoogle Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.CrossRefGoogle Scholar
Eble, G. J. 1998. Diversification of disasteroids, holasteroids and spatangoids in the Mesozoic. Pp. 629638in Mooi, R., and Telford, M., eds. Echinoderms. Balkema, Rotterdam.Google Scholar
Eble, G. J. 1999. On the dual nature of chance in evolutionary biology and paleobiology. Paleobiology 25:7587.Google Scholar
Endler, J. A., and Basolo, A. L. 1998. Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution 13:415420.CrossRefGoogle ScholarPubMed
Fisher, D. C. 1986. Progress in organismal design. Pp. 99117in Raup, D. M., and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Foote, M. 1991. Morphological patterns of diversification—examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversification in blastozoan echinoderms. Proceedings of the National Academy of Sciences USA 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.CrossRefGoogle Scholar
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.CrossRefGoogle Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Gatesy, S. M., and Middleton, K. M. 1997. Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Paleontology 17:308329.CrossRefGoogle Scholar
Gingerich, P. D. 1983. Rates of evolution—effects of time and temporal scaling. Science 222:159161.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1993. Quantification and comparison of evolutionary rates. American Journal of Science 293A:453478.CrossRefGoogle Scholar
Hoffman, A. 1989. Arguments on evolution: a paleontologist's perspective. Oxford University Press, New York.Google Scholar
Huey, R. B., and Bennett, A. F. 1987. Phylogenetic studies of coadaptation—preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:10981115.CrossRefGoogle ScholarPubMed
Hull, D. L. 1980. Individuality and selection. Annual Review of Ecology and Systematics 11:311332.CrossRefGoogle Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jernvall, J., Hunter, J. P., and Fortelius, M. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulates. Science 274:14891492.CrossRefGoogle Scholar
Lewontin, R. C., and Kojima, K. 1960. The evolutionary dynamics of complex polymorphisms. Evolution 14:458472.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.CrossRefGoogle Scholar
Martins, E. P. 1994. Estimating the rate of phenotypic evolution from comparative data. American Naturalist 144:193209.CrossRefGoogle Scholar
Maurer, B. A. 1998. The evolution of body size in birds. I. Evidence for non-random diversification. Evolutionary Ecology 12:925934.CrossRefGoogle Scholar
May, R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186:645647.CrossRefGoogle ScholarPubMed
McNamara, K. J., ed. 1990. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
McShea, D. W. 1998a. Possible largest-scale trends in organismal evolution: eight “live hypotheses.” Annual Review of Ecology and Systematics 29:293318.CrossRefGoogle Scholar
McShea, D. W. 1998b. Dynamics of diversification in state space. Pp. 91108in McKinney, M. L., and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Miles, D. B., and Dunham, A. E. 1993. Historical perspectives in ecology and evolutionary biology—the use of phylogenetic comparative analyses. Annual Review of Ecology and Systematics 24:587619.CrossRefGoogle Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Roy, K. 1994. Effects of the Mesozoic marine revolution on the taxonomic, morphological, and biogeographic evolution of a group—aporrhaid gastropods during the Mesozoic. Paleobiology 20:274296.CrossRefGoogle Scholar
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology 22:436452.CrossRefGoogle Scholar
Saunders, W. B., and Work, D. M. 1996. Shell morphology and suture complexity in Upper Carboniferous ammonoids. Paleobiology 22:189218.CrossRefGoogle Scholar
Saunders, W. B., Work, D. M., and Nikolaeva, S. V. 1999. Evolution of complexity in Paleozoic ammonite sutures. Science 286:760763.CrossRefGoogle Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Science, Oxford.CrossRefGoogle Scholar
Smith, L. H., and Lieberman, B. S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian Radiation. Paleobiology 25:459470.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences USA 72:646650.CrossRefGoogle ScholarPubMed
Sugihara, G., and May, R. M. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734741.CrossRefGoogle ScholarPubMed
Sundberg, F. A. 1996. Morphological diversification of Ptychopariida (Trilobita) from the Marjumiid biomere (Middle and Upper Cambrian). Paleobiology 22:4965.CrossRefGoogle Scholar
Trammer, J., and Kaim, A. 1997. Body size and diversity exemplified by three trilobite clades. Acta Palaeontologica Polonica 42:112.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.CrossRefGoogle ScholarPubMed
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115150.CrossRefGoogle Scholar
Wagner, P. J. 1998. A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24:430449.CrossRefGoogle Scholar
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphologic and stratigraphic data. Biological Journal of the Linnean Society 65:455500.CrossRefGoogle Scholar