Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:40:23.607Z Has data issue: false hasContentIssue false

Trophic model for the adaptive radiations and extinctions of pelagic marine mammals

Published online by Cambridge University Press:  08 February 2016

Jere H. Lipps
Affiliation:
Department of Geology, University of California, Davis, California 95616
Edward Mitchell
Affiliation:
Arctic Biological Station, P. O. Box 400, Ste. Anne de Bellevue, Quebec, Canada

Abstract

Pelagic marine mammals (cetaceans and pinnipeds) generally invaded the seas rapidly in response to new ecologic opportunities. After cetaceans initially appeared and radiated in the Eocene, they declined in the Oligocene, but radiated into many new adaptive types in the Miocene. Pinnipeds apparently evolved in the earliest Miocene, rapidly radiating into many adaptive types. We propose that the radiations, and declines, of species were responses to the availability of trophic resources in oceanic environments. These trophic resources are closely related to upwelling processes in the oceans. We suggest that increased upwelling intensity, due to climatic or tectonic events, permitted the initial invasions and radiations and that decreased intensity caused cetacean extinctions in the Oligocene.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1969. Tertiary climatic change in the northeastern Pacific Ocean. Science. 165:583586.CrossRefGoogle ScholarPubMed
Allen, G. M. 1921. A new fossil cetacean. Bull. Mus. Comp. Zool., Harvard Coll. 65:114.Google Scholar
Barnes, L. G. 1972. Miocene Desmatophocinae (Mammalia: Carnivora) from California. Univ. Calif. Publ. Geol. Sci. 89:176.Google Scholar
Barnes, L. G. and Mitchell, E. 1975. Late Cenozoic Northeast Pacific Phocidae. Rapp. Proc.-verb. Réun. Cons. int. Explor. Mer. 169:3442.Google Scholar
Bartholomew, G. A. 1970. A model for the evolution of pinniped polygyny. Evolution. 24:546559.CrossRefGoogle Scholar
Berger, W. H. 1973. Cenozoic sedimentation in the eastern tropical Pacific. Geol. Soc. Am. Bull. 84:19411954.2.0.CO;2>CrossRefGoogle Scholar
Bramlette, M. N. 1946. The Monterey Formation of California and the origin of its siliceous rocks. U.S. Geol. Surv. Prof. Pap. 212, 57 pp.Google Scholar
Calvert, S. E. 1966. Accumulation of diatomaceous silica in the sediments of the Gulf of California. Geol. Soc. Am. Bull. 77:569596.CrossRefGoogle Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18:154168.CrossRefGoogle Scholar
Cushing, D. H. 1971. Upwelling and the production of fish. Adv. Mar. Biol. 9:255334.CrossRefGoogle Scholar
Davies, J. L. 1958. The Pinnipedia: an essay in zoogeography. Geogr. Rev. 48:474493.CrossRefGoogle Scholar
Devereux, I. 1967. Oxygen isotope paleotemperature measurements on New Zealand Tertiary fossils. N. Z. J. Sci. 10:9881011.Google Scholar
Dietz, R. S. and Holden, J. 1970. Reconstruction of Pangaea; break-up and dispersion of the continents, Permian to present. J. Geophys. Res. 75:49394956.CrossRefGoogle Scholar
Dorman, F. H. 1968. Some Australian oxygen isotope temperatures and a theory for a 30-million-year world-temperature cycle. J. Geol. 76:297313.CrossRefGoogle Scholar
Downs, T. 1956. A new pinniped from the Miocene of Southern California: with remarks on the Otariidae. J. Paleontol. 30:115131.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper and Co.; San Francisco, Calif.Google Scholar
Emlong, D. 1966. A new archaic cetacean from the Oligocene of northwest Oregon. Univ. Oreg. Bull. Mus. Nat. Hist. 3:151.Google Scholar
Flower, W. H. 1883. On whales, past and present, and their probable origin. Nature. 28:199202, 226–230.Google Scholar
Frerichs, W. E. 1970. Paleobathymetry, paleotemperatures and tectonism. Geol. Soc. Am. Bull. 81:34453452.CrossRefGoogle Scholar
Hanna, G. D. 1931. Diatoms and silicoflagellates of the Kreyenhagen Shale. Calif. Div. Mines, Rep. State Mineral. 27:187201.Google Scholar
Hart, T. J. and Currie, R. I. 1960. The Benguela Current. Discovery Rep. 31:123298.Google Scholar
Heezen, B. C. et al. 1973. Diachronous deposits: a kinematic interpretation of the post Jurassic sedimentary sequence on the Pacific plate. Nature. 241:2532.CrossRefGoogle Scholar
Ingle, J. C. Jr. 1967. Foraminiferal biofacies variation and the Miocene–Pliocene boundary in southern California. Bull. Am. Paleontol. 52:217394.Google Scholar
Ingle, J. C. Jr. 1973. Summary comments on Neogene biostratigraphy, physical stratigraphy, and paleo-oceanography in the marginal Northeastern Pacific Ocean. pp. 949960. In: Kulm, L. D. et al. Initial Reports of the Deep Sea Drilling Project, vol. 18. U.S. Gov. Print. Off.; Washington, D.C.Google Scholar
Ingle, J. C. Jr. 1975. Summary of late Paleogene—Neogene insular stratigraphy, paleobathymetry, and correlations, Philippine Sea and Sea of Japan region. pp. 837855. In: Karig, D. E. et al. Initial Reports of the Deep Sea Drilling Project, vol. 31. U.S. Gov. Print. Off.; Washington, D.C.Google Scholar
Johnson, M. W. and Brinton, E. 1963. Biological species, water masses and currents. pp. 381414. In Hill, M. N., ed. The Sea. Vol. 2. Interscience Publ.; New York, N. Y.Google Scholar
Kellogg, R. 1928. The history of whales—their adaptation to life in the water. Quart. Rev. Biol. 3:2976, 174–208.CrossRefGoogle Scholar
Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1366.Google Scholar
Kennett, J. P. et al. 1972. Australian-Antarctic continental drift, paleocirculation changes and Oligocene deep-sea erosion. Nat. Phys. Sci. 239:5155.CrossRefGoogle Scholar
King, J. E. 1964. Seals of the world. 154 pp. Br. Mus. (Nat. Hist.); London.Google Scholar
Kleinenburg, S. E. 1959. On the origin of Cetacea. Proc. XVth Int. Congr. Zool., sect. 5(6):445447.Google Scholar
Knauss, J. A. 1963. Equatorial current systems. pp. 235252. In: Hill, M. N., ed. The Sea. Vol. 2. Interscience Publ.; New York, N.Y.Google Scholar
Ling, J. K. 1965. Functional significance of sweat glands and sebaceous glands in seals. Nature. 208:560562.CrossRefGoogle Scholar
Lipps, J. H. 1970a. Plankton evolution. Evolution. 22:124.CrossRefGoogle Scholar
Lipps, J. H. 1970b. Ecology and evolution of silicoflagellates. Proc. North Am. Paleontol. Conv., Chicago, 1969. G:965993.Google Scholar
Lipps, J. H. and Mitchell, E. 1969. Climatic regulation of factors controlling Otariid pinniped origins and diversification. Geol. Soc. Am. Spec. Pap. 121:176.Google Scholar
Lipps, J. H. and Valentine, J. W. 1970. The role of foraminifera in the trophic structure of marine communities. Lethaia. 3:279286.CrossRefGoogle Scholar
Longhurst, A. R. 1967. Diversity and trophic structure of zooplankton communities in the California current. Deep-sea Res. 14:393408.Google Scholar
MacGinitie, H. D. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol. Sci. 83:1203.Google Scholar
McKeel, D. R. and Lipps, J. H. 1975. Eocene and Oligocene planktonic formanifera from the Central and Southern Oregon Coast Range. J. Foram. Res. 5:249269.CrossRefGoogle Scholar
McLaren, I. A. 1960. Are the Pinnipedia biphyletic? Syst. Zool. 9:1828.CrossRefGoogle Scholar
Mitchell, E. D. 1966. The Miocene pinniped Allodesmus. Univ. Calif. Publ. Geol. Sci. 61:1105.Google Scholar
Mitchell, E. D. 1967. Controversy over diphyly in pinnipeds. Syst. Zool. 16:350351.CrossRefGoogle Scholar
Mitchell, E. D. 1968a. The Mio-Pliocene pinniped Imagotaria. J. Fish. Res. Board Can. 25:18431900.CrossRefGoogle Scholar
Mitchell, E. D. 1968b. Date of early Tertiary Arctic opening into the North Pacific. Geol. Soc. Am., Spec. Pap. 101:141.Google Scholar
Mitchell, E. D. 1975. Parallelism and convergence in the evolution of Otariidae and Phocidae. Rapp. Proc.-verb. Réun. Cons. int. Explor. Mer. 169:1226Google Scholar
Mitchell, E. D. and Tedford, R. H. 1973. The Enaliarctinae, a new group of extinct aquatic Carnivora and a consideration of the origin of the Otariidae. Bull. Am. Mus. Nat. Hist. 151:201284.Google Scholar
Namias, Jerome. 1960. The meterological picture 1957–1958. Calif. Coop. Oceanic Fish. Invest. Rep. 7:3141.Google Scholar
Nemoto, T. 1959. Food of baleen whales with reference to whale movements. Sci. Rep. Whales Res. Inst. 14:149290.Google Scholar
Nemoto, T. 1970. Feeding patterns of baleen whales in the ocean. pp. 241252. In: Steele, J. H., ed. Marine Food Chains. Univ. Calif. Press; Berkeley and Los Angeles, Calif.Google Scholar
Orr, W. N. 1972. Pacific northwest siliceous phytoplankton. Palaeogeogr., Palaeoclimatol., Palaeoecol. 12:95114.CrossRefGoogle Scholar
Orr, W. N. and Faulhaber, J. 1975. A middle Tertiary cetacean from Oregon. Northwest Sci. 49:174181.Google Scholar
Reid, J. L. Jr. 1960. Oceanography of the northeastern Pacific during the last ten years. Calif. Coop. Oceanic Fish. Invest. Rep. 7:7790.Google Scholar
Russell, L. S. 1968. A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Columbia. Can. J. Earth Sci. 5:929933.CrossRefGoogle Scholar
Ryther, J. H. 1969. Photosynthesis and fish production in the sea. Science. 166:7276.CrossRefGoogle ScholarPubMed
Sahni, A. and Mishra, V. P. 1975. Lower Tertiary vertebrates from Western India. Palaeontol. Soc. India Monogr. 3:148, pls. 1–6.Google Scholar
Sarich, V. M. 1969a. Pinniped origins and the rate of evolution of carnivore albumins. Syst. Zool. 18:286295.CrossRefGoogle ScholarPubMed
Sarich, V. M. 1969b. Pinniped phylogeny. Syst. Zool. 18:416422.CrossRefGoogle ScholarPubMed
Savin, S. M., Douglas, R. G., and Stehli, F. G. 1975. Tertiary marine paleotemperatures. Geol. Soc. Am. Bull. 86:14991510.2.0.CO;2>CrossRefGoogle Scholar
Sette, O. E. and Isaacs, J. D., eds. 1960. Symposium on “The Changing Pacific Ocean in 1957 and 1958.” Calif. Coop. Oceanic Fish Invest. Rep. 7:13217.Google Scholar
Taliaferro, N. L. 1933. The relation of volcanism to diatomaceous and associated siliceous sediments. Univ. Calif. Publ., Bull. Dep. Geol. Sci. 23:156.Google Scholar
Tarlo, L. B. H. 1963. A primitive whale from the London Clay of the Isle of Sheppey. Proc. Geol. Assoc. 74:319323.CrossRefGoogle Scholar
Townsend, C. H. 1935. The distribution of certain whales as shown by log book records of American whale ships. Zoologica. 19:150.Google Scholar
Tracey, J. I. Jr. et al. 1971. Leg 8 summary. pp. 1742. In: Tracy, J. I. et al. Initial Reports of the Deep-Sea Drilling Project, Vol. VIII. U.S. Gov. Print. Office; Washington, D.C.Google Scholar
Trofimov, B. A. and Gromova, V. I. 1962. Otryad Cetacea Kitoobraznie, pp. 171182. In: Orlov, Yu. A., ed. Osnovi Paleontologii. Gosudarstvennoe Nauchno-Tekhnicheskoe Izdatel'stvo Literatury po Geologii i Okhrane Nedr, Moskva, v. 13.Google Scholar
True, F. W. 1906. Description of a new genus and species of fossil seal from the Miocene of Maryland. Proc. U.S. Natl. Mus. 30:835840.CrossRefGoogle Scholar
Van Valen, L. 1968. Monophyly or diphyly in the origin of whales. Evolution. 22:3741.CrossRefGoogle Scholar
Wells, H. W. and Gray, I. E. 1960. Summer upwelling off the northeast coast of North Carolina. Limnol. Oceanogr. 5:108109.CrossRefGoogle Scholar
Wilson, L. E. 1935. Miocene marine mammals from the Bakersfield region, California. Peabody Mus. Nat. Hist. Bull. 4:1143.Google Scholar
Winge, H. 1921. A review of the interrelationships of the Cetacea. Smithson. Misc. Collect. 72(8):197.Google Scholar
Winterer, E. L. 1973. Sedimentary facies and plate tectonics of the equatorial Pacific. Am. Assoc. Pet. Geol. Bull. 57:265282.Google Scholar
Wooster, W. S. 1960. El Niño. Calif. Coop. Oceanic Fish. Invest. Rep. 7:4345.Google Scholar
Wooster, W. S. and Reid, J. L. Jr. 1963. Eastern boundary currents. pp. 253280. In: Hill, M. N., ed. The Sea. Vol. 2. Interscience Pub.; New York, N.Y.Google Scholar
Wornardt, W. W. Jr. 1969. Diatoms, past, present, future. pp. 690714. In: Bronnimann, P. and Renz, H. H., eds. Proceedings of the First International Conference on Planktonic Microfossils. E. J. Brill; Leiden.Google Scholar