Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T11:28:52.615Z Has data issue: false hasContentIssue false

Topological analysis of graphoglyptid trace fossils, a study of macrobenthic solitary and collective animal behaviors in the deep-sea environment

Published online by Cambridge University Press:  06 March 2018

Ruo-ying Fan
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China. E-mail: [email protected], [email protected]
Yi-ming Gong
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China. E-mail: [email protected], [email protected]
Alfred Uchman
Affiliation:
Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland. E-mail: [email protected]

Abstract

Graphoglyptids are biogenic structures commonly found in deep-sea flysch deposits and occasionally detected on the modern deep-sea floor. They extend principally horizontally and take a variety of geometric patterns, whose functional morphology remains an enigma in ichnology and paleoceanography. Based on published materials from 1850 to 2017 (79 ichnotaxa from 28 ichnogenera of graphoglyptids) and systematic observations of one of the largest deep-sea trace fossil collections in the world, this paper proposes that topological analysis is an important ingredient in the taxonomy and functional interpretation of graphoglyptids. Accordingly, graphoglyptids are classified into line, tree, and net forms by their key topological architecture, and are further attributed to 19 topological prototypes by detailed secondary topological features. Line graphoglyptids are single-connected structures with uniform tunnel width, representing primarily the feeding patterns of solitary animals. Tree graphoglyptids, the most diverse architectural group of graphoglyptids, are ascribed to 11 topological prototypes according to the connectivity features of burrow segments and the number and distributional pattern of the branching points. Net graphoglyptids are subdivided into three topological prototypes on the basis of the connectivity features and/or the regularity of the meshes. Multiconnected net forms are considered as a continuous morphological spectrum with different levels of complexity in the net formation. The various connected components in multiconnected tree and net graphoglyptids generally exhibit small and uniform tunnel diameter in a given structure (suggesting a tiny trace maker[s]). The whole structure shows relatively extensive linear or surface coverage and overall good preservation, indicating sustained processes of burrow construction. It is highly probable that certain multiconnected tree and net graphoglyptids represent some emergent patterns from self-organized collective behaviors of conspecific animals. Graphoglyptids thus provide us with a new perspective on the study of solitary and collective behaviors of macrobenthos in the deep-sea environment.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Azpeitia Moros, F. 1933. Datos para el estudio paleontólogico del Flysch de la Costa Cantábrica y de algunos otros puntos de España. Boletín del Instituto Geológico y Minero de España 53:165.Google Scholar
Belaústegui, Z., de Gibert, J. M., López-Blanco, M., and Bajo, I.. 2014. Recurrent constructional pattern of the crustacean burrow Sinusichnus sinuosus from the Paleogene and Neogene of Spain. Acta Palaeontologica Polonica 59:461474.Google Scholar
Bell, J. B., Jones, D. O. B., and Alt, C. H. S.. 2013. Lebensspuren of the bathyal Mid-Atlantic Ridge. Deep-Sea Research II 98:341351.Google Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M., and Uchman, A.. 2006. Names for trace fossils: a uniform approach. Lethaia 39:265286.Google Scholar
Bett, B. J., Rice, A. L., and Thurston, M. H.. 1995. A quantitative photographic survey of “spoke-burrow” type lebensspuren on the Cape Verde Abyssal Plain. Internationale Revue der gesamten Hydrobiologie und Hydrographie 80:153170.CrossRefGoogle Scholar
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., and Camazine, S.. 1997. Self-organization in social insects. Trends in Ecology and Evolution 12:188193.Google Scholar
Bromley, R. G., and Frey, R. W.. 1974. Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha . Bulletin of the Geological Society of Denmark 23:311335.Google Scholar
Buatois, L. A., Wisshak, M., Wilson, M. A., and Mángano, M. G.. 2017. Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Science Reviews 164:102181.Google Scholar
Danovaro, R., Company, J. B., Corinaldesi, C., D’Onghia, G., Galil, B., Gambi, C., Gooday, A. J., Lampadariou, N., Luna, G. M., Morigi, C., Olu, K., Polymenakou, P., Ramirez-Llodra, E., Sabbatini, A., Sardà, F., Sibuet, M., and Tselepides, A.. 2010. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE 5:e11832.Google Scholar
Demírcan, H., and Toker, V.. 2004. Cingöz formasyonu doğu yelpaze iz fosilleri (KB Adana). Maden Tetkik ve Arama Dergisi 129:6987.Google Scholar
Durden, J. M., Simon-Lledo, E., Gooday, A. J., and Jones, D. O. B.. 2017. Abundance and morphology of Paleodictyon nodosum, observed at the Clarion-Clipperton Zone. Marine Biodiversity 47:265269.Google Scholar
Ekdale, A. A. 1980. Graphoglyptid burrows in modern deep-sea sediment. Science 207:304306.Google Scholar
Ekdale, A. A. 1985. Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology 50:6381.Google Scholar
Fan, R.-Y., Uchman, A., and Gong, Y.-M.. 2017. From morphology to behaviour: quantitative morphological study of the trace fossil Helminthorhaphe . Palaeogeography, Palaeoclimatology, Palaeoecology 485:946955.CrossRefGoogle Scholar
Farrés, F. 1967. Los “Dendrotichnium” de España. Notas y Comunicaciónes Instituto Geológico y Minero de España 94:2936.Google Scholar
Fuchs, T. 1895. Studien über Fucoiden und Hieroglyphen. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 62:369448.Google Scholar
Fürsich, F. T., Taheri, J., and Wilmsen, M.. 2007. New occurrences of the trace fossil Paleodictyon in shallow marine environments: examples from the Triassic–Jurassic of Iran. Palaios 22:408416.Google Scholar
Gaillard, C. 1991. Recent organism traces and ichnofacies on the deep-sea floor off New Caledonia, Southwestern Pacific. Palaios 6:302315.Google Scholar
Gong, Y.-M., and Huang, D.-H.. 1997. Topologic configuration of a graphoglyptid and its functional morphologic analysis. Chinese Science Bulletin 42:13941397.Google Scholar
Gong, Y.-M., and Si, Y.-L.. 1991. Trace fossils and topology. Chinese Science Bulletin 36:18031806.Google Scholar
Gong, Y.-M., and Si, Y.-L.. 2002. Classification and evolution of metazoan traces at a topological level. Lethaia 35:263274.Google Scholar
Grossgeim, V. A. 1946. O znacheniy i metodike izucheniya hieroglifov (na materiale kavkazkoho flyscha). Izvestia Akademii Nauk SSSR, Seria Geologicheskaia 2:111120.Google Scholar
Grossgeim, V. A. 1961. Niekatoriye noviye gieroglifi iz nizhniemielovikh otl’ozheniy severo-zapodnokho Kavkaza. Trudy Krasnodarskoho Filal’a Vsesoyuznoho Neftegazovoho Nauchno-Issedovatielskoho Instituta 6:202206.Google Scholar
Hectonichnus [Wikipedia user name]. 2016. Paleodictyon from Miocene of River Savio, Italy—on display at Museo Geologico G. Cappellini, Bologna. https://upload.wikimedia.org/wikipedia/commons/9/96/Palaeodictyon.JPG (CC BY-SA 4.0 [http://creativecommons.org/licenses/by-sa/4.0] or GFDL [http://www.gnu.org/copyleft/fdl.html], via Wikimedia Commons [accessed 17/09/05]).Google Scholar
Heer, O. 1877. Flora Fossilis Helvetiae. Die vorweltliche Flora der Schweiz. J. Würster & Co., Zürich.Google Scholar
Heezen, B. C., and Hollister, C. D.. 1971. The face of the deep. Oxford University Press, New York.Google Scholar
Honeycutt, C. E., and Plotnick, R. E.. 2005. Mathematical analysis of Paleodictyon: a graph theory approach. Lethaia 38:345350.Google Scholar
Huang, D.-H., and Gong, Y.-M.. 1998. Morphological-structural analysis and topologic taxonomy on trace fossils. Science in China Series D: Earth Sciences 41:269276.Google Scholar
Huckriede, R. 1952. Eine spiralförmige Lebensspur aus dem Kulmkieselschiefer von Biedenkopf an der Lahn (Spirodesmos archimedeus n. sp.). Paläontologische Zeitschrift 26:175180.Google Scholar
Koy, K. A., and Plotnick, R. E.. 2007. Theoretical and experimental ichnology of mobile foraging. Pp. 428441 in W. Miller III, ed. Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam.Google Scholar
Koy, K. A., and Plotnick, R. E.. 2010. Ichnofossil morphology as a response to resource distribution: insights from modern invertebrate foraging. Palaeogeography, Palaeoclimatology, Palaeoecology 292:272281.Google Scholar
Książkiewicz, M. 1968. On some problematic organic traces from the Flysch of the Polish Carpathians. Rocznik Polskiego Towarzystwa Geologicznego 38:117.Google Scholar
Książkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians. In T. P. Crimes, and J. C. Harper, eds. Trace fossils. Geological Journal, Special Issue 3:283322. Seel House, Liverpool.Google Scholar
Książkiewicz, M. 1977. Trace fossils in the flysch of the the Polish Carpathians. Palaeontologia Polonica 36:1208.Google Scholar
Lehane, J. R., and Ekdale, A. A.. 2013a. Fractal analysis of graphoglyptid trace fossils. Palaios 28:2332.Google Scholar
Lehane, J. R., and Ekdale, A. A.. 2013b. Pitfalls, traps, and webs in ichnology: traces and trace fossils of an understudied behavioral strategy. Palaeogeography, Palaeoclimatology, Palaeoecology 375:5969.Google Scholar
Lehane, J. R., and Ekdale, A. A.. 2014. Analytical tools for quantifying the morphology of invertebrate trace fossils. Journal of Paleontology 88:747759.Google Scholar
Lehane, J. R., and Ekdale, A. A.. 2016. Morphometric analysis of graphoglyptid trace fossils in two dimensions: implications for behavioral evolution in the deep sea. Paleobiology 42:317334.CrossRefGoogle Scholar
Macsotay, O. 1967. Huellas problematicas y su valor paleoecologico en Venezuela. Geos 16:779.Google Scholar
Miller, W. III. 1991. Paleoecology of graphoglyptids. Ichnos 1:305312.Google Scholar
Miller, W. III 2012. On the doctrine of ichnotaxonomic conservatism: the differences between ichnotaxa and biotaxa. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 265:295304.Google Scholar
Miller, W. III 2014. Mystery of the graphoglyptids. Lethaia 47:13.Google Scholar
Minter, N. J., Buatois, L. A., Lucas, S. G., Braddy, S. J., and Smith, J. A.. 2006. Spiral-shaped graphoglyptids from an Early Permian intertidal flat. Geology 34:10571060.Google Scholar
Monaco, P. 2008. Taphonomic features of Paleodictyon and other graphoglyptid trace fossils in Oligo-Miocene thin-bedded turbidites, northern Apennines, Italy. Palaios 23:667682.CrossRefGoogle Scholar
Olivero, E. B., López Cabrera, M. I., Malumián, N., and Torres Carbonell, P. J.. 2010. Eocene graphoglyptids from shallow-marine, high-energy, organic-rich, and bioturbated turbidites, Fuegian Andes, Argentina. Acta Geologica Polonica 60:7791.Google Scholar
Osborn, K. J., Kuhnz, L. A., Priede, I. G., Urata, M., Gebruk, A. V., and Holland, N. D.. 2012. Diversification of acorn worms (Hemichordata, Enteropneusta) revealed in the deep sea. Proceedings of the Royal Society of London B 279:16461654.Google Scholar
Peruzzi, D. G. 1880. Osservazioni sui generi Paleodictyon e Paleomeandron dei terreni cretacei ed eocenici dell’Appennino settentrionale e centrale. Attii della Società Toscana di Scienze Naturali Residente in Pisa, Memorie 5:38.Google Scholar
Plotnick, R. E. 2003. Ecological and L-system based simulations of trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 192:4558.Google Scholar
Priede, I. G., Osborn, K. J., Gebruk, A. V., Jones, D., Shale, D., Rogacheva, A., and Holland, N. D.. 2012. Observations on torquaratorid acorn worms (Hemichordata, Enteropneusta) from the North Atlantic with descriptions of a new genus and three new species. Invertebrate Biology 131:244257.Google Scholar
Prusinkiewicz, P., and Lindenmayer, A.. 1990. The algorithmic beauty of plants. Springer, New York.Google Scholar
Przeslawski, R., Dundas, K., Radke, L., and Anderson, T. J.. 2012. Deep-sea Lebensspuren of the Australian continental margins. Deep-Sea Research I 65:2635.Google Scholar
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C. R., Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A., and Vecchione, M.. 2010. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:28512899.Google Scholar
Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R., Johnson, N. A., Stuart, C. T., Deming, J. W., Thies, R., and Avery, R.. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series 317:18.Google Scholar
Rona, P. A., Seilacher, A., de Vargas, C., Gooday, A. J., Bernhard, J. M., Bowser, S., Vetriani, C., Wirsen, C. O., Mullineaux, L., Sherrell, R., Grassle, J. F., Low, S., and Lutz, R. A.. 2009. Paleodictyon nodosum: a living fossil on the deep-sea floor. Deep-Sea Research II 56:17001712.Google Scholar
Sacco, F. 1886. Intorno ad alcune impronte organiche dei terreni terziari del Piemonte. Atti della Reale Accademia delle Scienze di Torino 21:687710.Google Scholar
Sacco, F. 1888. Note di Paleoicnologia Italiana. Atti della Società Italiana di Scienze Naturali 31:151192.Google Scholar
Savi, P., and Meneghini, G. G.. 1850. Osservazioni stratigrafische e paleontologische concernati la geologia della Toscana e dei paesi limitrofi. Appendix. Pp. 246528 in R. I. Murchison, ed. Memoria sulla struttura geologica delle Alpi, degli Apennini e dei Carpazi. Stamperia Granducale, Firenze.Google Scholar
Seilacher, A. 1953. Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 96:421452.Google Scholar
Seilacher, A. 1962. Paleontological studies on turbidite sedimentation and erosion. Journal of Geology 70:227234.Google Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils. In T. P. Crimes, and J. C. Harper, eds. Trace fossils 2. Geological Journal, Special Issue 9:289334. Seel House, Liverpool.Google Scholar
Seilacher, A. 1989. Spirocosmorhaphe, a new graphoglyptid trace fossil. Journal of Paleontology 63:116117.Google Scholar
Sims, D. W., Reynolds, A. M., Humphries, N. E., Southall, E. J., Wearmouth, V. J., Metcalfe, B., and Twitchett, R. J.. 2014. Hierarchical random walks in trace fossils and the origin of optimal search behavior. Proceedings of the National Academy of Sciences USA 111:1107311078.Google Scholar
Stefani, C. de. 1895. Aperçu géologique et description paléontologique de l’île de Karpathos. Pp. 165180 in C. de Stefani, C. J. Forsyth Major, and W. Barbey, eds. Karpathos. Étude géologique, paléontologique et botanique. Georges Bridel & Cie Éditeurs, Lausanne.Google Scholar
Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnoso–arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:3115.Google Scholar
Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Książkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae 68:105218.Google Scholar
Uchman, A. 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous–Eocene) in Austria and Germany. Beringeria 25:67173.Google Scholar
Uchman, A. 2001. Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria 28:341.Google Scholar
Uchman, A. 2003. Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeography, Palaeoclimatology, Palaeoecology 192:123142.Google Scholar
Uchman, A. 2004. Phanerozoic history of deep-sea trace fossils. In D. McIlroy, ed. The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London Special Publication. 228:125139.Google Scholar
Uchman, A., and Wetzel, A.. 2001. Estrellichnus jacaensis nov. igen., nov. isp.—a large radial trace fossil from Eocene flycsh (Hecho Group, northern Spain). Geobios 34:357361.Google Scholar
Uchman, A., Janbu, N. E., and Nemec, W.. 2004. Trace fossils in the Cretaceous–Eocene flysch of the Sinop-Boyabat Basin, Central Pontides, Turkey. Annales Societatis Geologorum Poloniae 74:197235.Google Scholar
Uchman, A., Abbassi, N., and Naeeji, M.. 2005. Persichnus igen. nov. and associated ichnofossils from the Upper Cretaceous to Eocene deep-sea deposits of the Sanandaj Area, West Iran. Ichnos 12:141149.Google Scholar
Ulrich, E. O. 1904. Fossils and age of the Yakutat Formation. Description of the collections made chiefly near Kodiak, Alaska. Pp. 125146 in B. K. Emerson, C. Palache, W. H. Dall, E. O. Ulrich, and F. H. Knowlton, eds. Alaska, geology and paleontology. Doubleday, Page & Co, New York.Google Scholar
Van der Marck, W. 1863. Fossile Fische, Krebse und Pflanzen aus dem Plattenkalk der jüngsten Kreide in Westphalen. Palaeontographica 11:183.Google Scholar
Vialov, O. S. 1968. O zviezdchatykh problematikakh. Ezheegodnik Vsesoyuznogo Paleontologicheskiyego Obshchestva 18:326340.Google Scholar
Vialov, O. S. 1971. Redkie problematiki iz Mezozoya Pamira i Kavkaza. Paleontologicheskiy Sbornik 7:8593.Google Scholar
Wetzel, A., and Uchman, A.. 1998. Deep-sea benthic food content recorded by ichnofabrics: a conceptual model based on observations from Paleogene flysch, carpathians, Poland. Palaios 13:533546.Google Scholar
Wetzel, A., and Bromley, R. G.. 1996. Re-evaluation of the ichnogenus Helminthopsis—a new look at the type material. Palaeontology 39:119.Google Scholar
Zuber, R. 1910. Eine fossile Meduse aus dem Kreideflysch der ostgalizischen Karpathen. Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt volume for year 1910:5758.Google Scholar