Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T17:47:58.133Z Has data issue: false hasContentIssue false

Topographic maps applied to comparative molar morphology: the case of murine and cricetine dental plans (Rodentia, Muroidea)

Published online by Cambridge University Press:  08 April 2016

Vincent Lazzari
Affiliation:
UMR CNRS 5554, Institut des Sciences de l'Evolution, BP064, Universitè de Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. E-mail: [email protected]
Paul Tafforeau
Affiliation:
European Synchrotron Radiation Facility, BP220, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France. E-mail: [email protected]
Jean-Pierre Aguilar
Affiliation:
UMR CNRS 5554, Institut des Sciences de l'Evolution, BP064, Universitè de Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. E-mail: [email protected]
Jacques Michaux
Affiliation:
UMR CNRS 5554, Institut des Sciences de l'Evolution, BP 064, Ecole Pratique des Hautes Etudes, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex 5, France. E-mail: [email protected]

Abstract

We developed a new method to generate topographic maps of tooth crowns from X-ray synchrotron microtomographic data. Maps are drawn after cervix-plane orientation of tooth image stacks, without the need for a geographic information system. Classical topographic maps with contour lines are complemented by slope maps and angularity maps. Cartography allows precise comparisons of cusps morphologies, and quantification of the directions of cusp axis elongation and slope. Application of this method to muroid rodents with cricetine and murine dental patterns reveals clear-cut differences in cusps morphology that are indicative of the direction of the chewing movement, in agreement with wear facet analyses. Rodents with a murine dental pattern were derived from ancestors with a cricetine pattern, and their origin is associated with important changes in cusp morphology and organization. In order to understand such evolutionary change, our investigation is applied to a sample of extant and fossil muroid rodents that are characterized by either a murine dental plan or a cricetine one, or a dental pattern intermediate between those of cricetines and murines.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ameur, R. 1984. Découverte de nouveaux rongeurs dans la formation Miocène de Bou Hanifia (Algérie occidentale). Geobios 17:167175.CrossRefGoogle Scholar
Brandy, L. D. 1981. Rongeurs Muroïdés de Néogène supérieur d'Afghanistan. Evolution, biogéographie, corrélations. Paleovertebrata 11:133179.Google Scholar
Butler, P. M. 1980. Functional aspects of the evolution of rodent molars. Paleovertebrata, Mémoire du Jubilée R. Lavocat, pp. 249262.Google Scholar
Butler, P. M. 1985. Homology of cusps and crests, and their bearing on assessments of rodent phylogeny. Pp. 381401in Luckett, W. P. and Hartenberger, J.-L., eds. Evolutionary relationships among rodents. Plenum, New York.Google Scholar
Chaline, J., Mein, P., and Petter, F. 1977. Les grandes lignes d'une classification évolutive des Muroidea. Mammalia 41:245252.CrossRefGoogle Scholar
Charles, C., Jaeger, J. J., Michaux, J., and Viriot, L. 2007. Dental microwear in relation to changes in the direction of mastication during the evolution of Myodonta (Rodentia, Mammalia). Naturwissenschaften.CrossRefGoogle Scholar
Chevret, P., Denys, C., Jaeger, J.-J., Michaux, J., and Catzeflis, F. M. 1993. Molecular evidences that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae). Proceedings of the National Academy of Sciences USA 90:34333436.Google Scholar
Dennis, J. C., Ungar, P. S., Teaford, M. F., and Glander, K. E. 2004. Dental topography and molar wear in Alouatta palliata from Costa Rica. American Journal of Physical Anthropology 125:152161.Google Scholar
Evans, A. R. 2005. Connecting morphology, function and tooth wear in microchiropterans. Biological Journal of the Linnean Society 85:8196.Google Scholar
Evans, A. R., Wilson, G. P., Fortelius, M., and Jernvall, J. 2006. High-level similarity of dentitions in carnivorans and rodents. Nature 445:7881.CrossRefGoogle ScholarPubMed
Feist, M., Liu, J., and Tafforeau, P. 2005. New insights into Paleozoic charophyte morphology and phylogeny. Paleobotany 92:11521160.Google Scholar
Flynn, L. J., Jacobs, L. L., and Lindsay, E. H. 1985. Problems in muroid phylogeny: relationship to other rodents and origin of major groups. Pp. 589616in Luckett, W. P. and Hartenberger, J. L., eds. Evolutionary relationships among rodents: a multidisciplinary analysis. Plenum, New York.CrossRefGoogle Scholar
Flynn, L. J., Barry, J. C., Morgan, M. E., Pilbeam, D., Jacobs, L. L., and Lindsay, E. H. 1995. Neogene Siwalik mammalian lineages: species longevities, rates of change, and modes of speciation. Palaeogeography, Palaeoclimatology, Palaeoecology 115:249264.Google Scholar
Jacobs, L. L. 1977. A new genus of murid from the Miocene of Pakistan and comments on the origin of the Muridae. PaleoBios 25:111.Google Scholar
Jacobs, L. L. 1978. Fossils rodents (Rhizomyidae & Muridae) from Neogene Siwalik deposits, Pakistan. Museum of Northern Arizona Press Bulletin Series 52:1103.Google Scholar
Jacobs, L. L., and Flynn, L. J. 2005. Of mice… again: the Siwalik rodent record, murine distribution, and molecular clocks. Pp. 6380in Lieberman, D. E., Smith, R. J., and Kelley, J., eds. Interpreting the past: essays on human, primate, and mammal evolution in honor of David Pilbeam. Brill Academic, Boston.Google Scholar
Jacobs, L. L., Flynn, L. J., and Downs, W. R. 1989. Neogene Rodentia of southern Asia. In Black, C. C. and Dawson, M. R., eds. Papers on fossil rodents in honor of Albert Elmer Wood. Science Series No. 33:157177. Natural History Museum of Los Angeles County, Los Angeles.Google Scholar
Jaeger, J. J., Tong, H., Buffetaut, E., and Ingavat, R. 1985. The first fossil rodents from the Miocene of northern Thailand and their bearing on the problem of the origin of the Muridae. Revue de Paléobiologie 4:17.Google Scholar
Jaeger, J. J., Tong, H., and Denys, C. 1986. Age de la divergence Mus-Rattus: comparaison des données paléontologiques et moléculaires. Comptes Rendus de l'Académie des Sciences de Paris 302, série II, No. 14):917922.Google Scholar
Jansa, S. A., and Weskler, M. 2004. Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution. 31:256276.Google Scholar
Jernvall, J., and Jung, H.-S. 2000. Genotype, phenotype, and developmental biology of molar tooth characters. Yearbook of Physical Anthropology 43:171190.Google Scholar
Jernvall, J., and Selänne, L. 1999. Laser confocal microscopy and geographic information systems in the study of dental morphology. Paleontologica Electronica 2(1), http://www-odp.tamu.edu/paleo/1999_1/confocal/issue1_99.htmGoogle Scholar
Jernvall, J., Keränen, S., and Thesleff, I. 2000. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proceedings of National Academy of Sciences USA 97:1444414448.Google Scholar
Kangas, A. T., Evans, A. R., Thesleff, I., and Jernvall, J. 2004. Non-independence of mammalian dental characters. Nature 432:211214.CrossRefGoogle Scholar
King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., and Jernvall, J. 2005. Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences USA 102:1657916583.Google Scholar
Lavocat, R. 1967. A propos de la dentition des rongeurs et du problème de l'origine des Muridés. Mammalia 31:205216.Google Scholar
Lazzari, V., and Aguilar, J.-P. 2007. Les Megacricetodon du gisement karstique Miocène moyen de Blanquatères-1 (Pyrénéesorientales, sud de la France): nouvelles espèces, implications phylogéniques. Geobios (in press).Google Scholar
McKenna, M. C., and Bell, S. K. 1997. Classification of mammals above the species level. Columbia University Press, New York.Google Scholar
Michaux, J., Reyes, A., and Catzeflis, F. M. 2001. Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Molecular Biology and Evolution 18:20172031.Google Scholar
Miller, E. S. 1912. Catalogue of the mammals of Western Europe in the collection of the British Museum. British Museum, London.Google Scholar
Musser, G. G., and Carleton, M. D. 2005. Superfamily Muroidea. Pp. 8941531in Wilson, D. E. and Reeder, D. M., eds. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore.Google Scholar
Petter, F. 1964. Affinités du genre Cricetomys: une nouvelle famille de Rongeurs Cricetidae, les Cricetomyinae. Comptes Rendus de l'Académie des Sciences de Paris 258:65166518.Google Scholar
Petter, F. 1966. L'origine des Muridés. Plan cricétin et plans murins. Mammalia 30:205225.CrossRefGoogle Scholar
Polly, P. D. 1998. Variability, selection, and constraints: development and evolution in viverravid (Carnivora, Mammalia) molar morphology. Paleobiology 24:409429.Google Scholar
Polly, P. D. 2003. Paleophylogeography of Sorex araneus (Insectivora, Soricidae): molar shape as morphological marker for fossil shrews. Mammalia 68:233243.Google Scholar
Renaud, S., Michaux, J., Jaeger, J. J., and Auffray, J. C. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: non progressive evolutionary pattern in a gradual lineage. Paleobiology 22:255265.CrossRefGoogle Scholar
Renaud, S., Michaux, J., Mein, P., Aguilar, J.-P., and Auffray, J.-C. 1999. Patterns of size and shape differentiation during the evolutionary radiation of the European Miocene murine rodents. Lethaia 32:6171.CrossRefGoogle Scholar
Salvo, L., Clotens, P., Maire, E., Zabler, S., Blandin, J. J., Buffière, J. Y., Ludwig, W., Boiler, E., Bellet, D., and Josserond, C. 2003. X-ray micro-tomography: an attractive characterisation technique in materials science. Nuclear Instruments and Methods in Physics Research B 200:273286.CrossRefGoogle Scholar
Schaub, S. 1938. Tertiäre and Quartäre Murinae. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft 61:138.Google Scholar
Schaub, S. 1958. Simplicidentata. Pp. 659818in Piveteau, J., ed. Traité de Paléontologie, Vol. 6, Part 2. Masson, Paris.Google Scholar
Shimizu, D. 2002. Functional implications of enamel thickness in the lower molars of red colobus (Procolobus badius) and Japanese macaque (Macaca fuscata). Journal of Human Evolution 43:605620.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1945. The principles of classification and a classification of mammals. American Museum National History Bulletin 85:1350.Google Scholar
Stehlin, H. G., and Schaub, S. 1951. Die Trigonodontie der Simplicidentaten Nager. Schweizerische Paläontologische Abhandlungen 67:1385.Google Scholar
Steppan, S. J., Adkins, R. M., and Anderson, J. 2004. Phylogeny and divergence: date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology 53:533553.Google Scholar
Suwa, G., and Kono-Takeuchi, R. 1998. A redefined method of measuring basal crown and cusps areas by use of a three-dimensional digitizing system. Anthropological Science 106(Suppl.):95105.Google Scholar
Tafforeau, P. 2004. Aspects phylogénétiques et fonctionnels de la microstructure de l'email dentaire et de la structure tridimensionnelle des molaires chez les primates fossiles et actuels: apports de la microtomographie à rayonnement X synchrotron. . Université Montpellier 2 Sciences et Techniques du Languedoc, Montpellier.Google Scholar
Tafforeau, P., Boistel, R., Boiler, E., Bravin, A., Brunet, M., Chaimanee, Y., Clotens, P., Feist, M., Hoszowska, J., Jaeger, J. J., Kay, R. F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P., and Zabler, S. 2006. Applications of X-Ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A 83:195202.Google Scholar
Tong, H. 1989. Origine et évolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Mémoires de la Société Géologique de France 155.Google Scholar
Tullberg, T. 1899. Über das System der Nagethiere: Eine Phylogenetische Studie. Nova Acta Regiae Societatis Scientiarum Upsaliensis 3:1514.Google Scholar
Ungar, P. S., and M'Kirera, F. 2003. A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Sciences USA 100:38743877.Google Scholar
Ungar, P., and Williamson, M. 2000. Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Paleontologica Electronica 3(1), http://palaeo-electronica.org/2000_1/gorilla/issue1_00.htmGoogle Scholar
van Dam, J. A. 1996. The small mammals from the upper Miocene of the Teruel-Alfambra Region (Spain): paleobiology and paleoclimatic reconstructions. Geologica Ultraiectina 156. . University of Utrecht, Utrecht.Google Scholar
Walhert, J. H. 1984. Relationships of the extinct rodent Cricetops to Lophiomys and the Cricetinae (Rodentia, Cricetidae). American Museum Novitates 2784:115.Google Scholar
Wessels, W., Bruijn, H. d., Hussain, S. T., and Leinders, J. J. M. 1982. Fossil rodents from the Chinji Formation, Banda Daud Shah, Kohat, Pakistan. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings B 85:337364.Google Scholar
Zuccotti, L. F., Williamson, M. D., Limp, W. F., and Ungar, P. 1998. Modeling primate occlusal topography using geographic information systems technology. American Journal of Physical Anthropology 93:323340.Google Scholar