Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T05:26:38.726Z Has data issue: false hasContentIssue false

Tooth occlusal morphology in the durophagous marine reptiles, Placodontia (Reptilia: Sauropterygia)

Published online by Cambridge University Press:  14 September 2016

Stephanie B. Crofts
Affiliation:
Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, U.S.A. E-mail:[email protected]
James M. Neenan
Affiliation:
Oxford University Museum of Natural History, Oxford, OX1 3PW, U.K., and Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, U.K. E-mail: [email protected]
Torsten M. Scheyer
Affiliation:
Universität Zürich, Paläontologisches Institut und Museum, Zürich CH-8006, Switzerland
Adam P. Summers
Affiliation:
Department of Biology, University of Washington, Seattle, Washington 98195-1800, U.S.A., and University of Washington, Friday Harbor Laboratories, Friday Harbor, Washington 98250, U.S.A

Abstract

Placodontia were a group of marine reptiles that lived in shallow nearshore environments during the Triassic. Based on tooth morphology it has been inferred that they were durophagous, but tooth morphology differs among species: placodontoid placodonts have teeth described as hemispherical, and the teeth of more highly nested taxa within the cyamodontoid placodonts have been described as flat. In contrast, the sister taxon to the placodonts, Palatodonta bleekeri, like many other marine reptiles, has tall pointed teeth for eating soft-bodied prey. The goals of this paper are to quantify these different tooth morphologies and compare tooth shape among taxa and with a functionally “optimal” tooth. To quantify tooth morphology we measured the radius of curvature (RoC) of the occlusal surface by fitting spheres to 3D surface scans or computed microtomographic scans. Large RoCs correspond to flatter teeth, while teeth with smaller RoCs are pointier; positive RoCs have convex occlusal surfaces, and a negative RoC indicates that the occlusal surface of the tooth is concave. We found the placodontoid taxa have teeth with smaller RoCs than more highly nested taxa, and palatine teeth tend to be flatter and closer to the optimal morphology than maxillary teeth. Within one well-nested clade, the placochelyids, the rearmost palatine teeth have a more complex morphology than the predicted optimal tooth, with an overall concave occlusal surface with a small, medial cusp. These findings are in keeping with the hypothesis that placodonts were specialized durophagous predators with teeth modified to break hard prey items while resisting tooth failure.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agassiz, L. 1833–1845. Recherches sur les Poissons Fossiles, Vols. I–V. Imprimaire de Petitpierre, Neuchâtel.Google Scholar
Anderson, P. S. L. 2009. The effects of trapping and blade angle of notched dentitions on fracture of biological tissues. Journal of Experimental Biology 212:36273632. doi: 10.1242/jeb.033712.Google Scholar
Anderson, P. S. L., and LaBarbera, M.. 2008. Functional consequences of tooth design: effects of blade shape on energetics of cutting. Journal of Experimental Biology 211:36193626. doi: 10.1242/jeb.020586.Google Scholar
Assmann, P. 1937. Revision der Fauna der Wirbellosen der oberschlesischen Trias. Abhandlung der Preussischen Geologischen Landesanstalt 170:1126.Google Scholar
Berthaume, M., Grosse, I. R., Patel, N. D., Strait, D. S., Wood, S., and Richmond, B. G.. 2010. The effect of early Hominin occlusal morphology on the fracturing of hard food items. Anatomical Record 293:594606. doi: 10.1002/ar.21130.Google Scholar
Berthaume, M. A., Dumont, E. R., Godfrey, L. R., and Grosse, I. R.. 2013. How does tooth cusp radius of curvature affect brittle food item processing? Journal of the Royal Society Interface 10:20130240. doi: 10.1098/rsif.2013.0240.Google Scholar
Berthaume, M. A., Dumont, E. R., Godfrey, L. R., and Grosse, I. R.. 2014. The effect of relative food item size on optimal tooth cusp sharpness during brittle food item processing. Journal of the Royal Society Interface 11:20140965. doi: 10.1098/rsif.2014.0965.Google Scholar
Blake, D. B., and Hagdorn, H.. 2003. The Asteroidea (Echinodermata) of the Muschelkalk (Middle Triassic of Germany). Paläontologische Zeitschrift 77:2358.Google Scholar
Boulding, E. G. 1984. Crab-resistant features of shells of burrowing bivalves: decreasing vulnerability by increasing handling time. Journal of Experimental Marine Biology and Ecology 76:201223.Google Scholar
Chai, H., Lee, J. J.-W., Kwon, J.-Y., Lucas, P. W., and Lawn, B. R.. 2009. A simple model for enamel fracture from margin cracks. Acta Biomaterialia 5:16631667.CrossRefGoogle ScholarPubMed
Chai, H., Lee, J. J.-W., and Lawn, B. R.. 2011. On the chipping and splitting of teeth. Journal of the Mechanical Behavior of Biomedical Materials 4:315321. doi: 10.1016/j.jmbbm.2010.10.011.Google Scholar
Crofts, S. B. 2015. Finite element modelling of occlusal variation in durophagous tooth systems. Journal of Experimental Biology 218:27052711. doi: 10.1242/jeb.120097.Google Scholar
Crofts, S. B., and Summers, A. P.. 2014. How to best smash a snail: the effect of tooth shape on crushing load. Journal of the Royal Society Interface 11:20131053. doi: 10.1098/rsif.2013.1053.CrossRefGoogle ScholarPubMed
Dalrymple, G. H. 1979. On the jaw mechanism of the snail-crushing lizards, Dracaena Daudin 1802 (Reptilia, Lacertilia, Teiidae). Journal of Herpetology 13:303311.Google Scholar
Falkingham, P. L. 2012. Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica 15:1T-15p. palaeo-electronica.org/content/issue-1-2012-technical-articles/92-3d-photogrammetry.Google Scholar
Keown, A. J., Bush, M. B., Ford, C., Lee, J. J.-W., Constantino, P. J., and Lawn, B. R.. 2012. Fracture susceptibility of worn teeth. Journal of the Mechanical Behavior of Biomedical Materials 5:247256.CrossRefGoogle ScholarPubMed
Kislalioglu, M., and Gibson, R. N.. 1976. Prey “handling time” and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L.). Journal of Experimental Marine Biology and Ecology 25:115158.Google Scholar
Kuhn-Schnyder, E. 1959. Über das Gebiss von Cyamodus . Mitteilungen aus dem Paläontologischen Institut der Universität Zürich 1:174188.Google Scholar
Lawn, B. R., Bush, M. B., Barani, A., Constantino, P. J., and Wroe, S.. 2013. Inferring biological evolution from fracture patterns in teeth. Journal of Theoretical Biology 338:5965. doi: 10.1016/j.tbi.2013.08.029.Google Scholar
Lee, J. J.-W., Constantino, P. J., Lucas, P. W., and Lawn, B. R.. 2011. Fracture in teeth—a diagnostic for inferring bite force and tooth function. Biological Reviews 86:959974. doi: 10.1111/j.1469-185X.2011.00181.x.Google Scholar
Lucas, P., Constantino, P. W., Wood, B., and Lawn, B.. 2008. Dental enamel as a dietary indicator in mammals. Bioessays 30:374385.CrossRefGoogle ScholarPubMed
Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology 7:121137. doi: 10.1080/02724634.1987.10011647.Google Scholar
Mazin, J.-M. 1989. La denture et la region palatine des Placodontia (Reptilia, Trias). Implications phylogénétiques. Geobios 22:725734.Google Scholar
Mazin, J. M., and Pinna, G.. 1993. Palaeoecology of the armoured placodonts. Paleontologia Lombarda 2:8391.Google Scholar
McRoberts, C. A. 2001. Triassic bivalves and the initial marine Mesozoic revolution: a role for predators? Geology 29:359362.Google Scholar
Neenan, J. M., and Scheyer, T. M.. 2014. New specimen of Psephoderma alpinum (Sauropterygia, Placodontia) from the Late Triassic of Schesaplana Mountain, Graubünden, Switzerland. Swiss Journal of Geosciences 107:349357.Google Scholar
Neenan, J. M., Klein, N., and Scheyer, T. M. 2013. European origin of placodont marine reptiles and the evolution of crushing dentition in Placodontia. Nature Communications 4:1621. doi: 10.1038/ncomms2633.Google Scholar
Neenan, J. M., Li, C., Rieppel, O., Bernardini, F., Tuniz, C., Muscio, G., and Scheyer, T. M.. 2014. Unique method of tooth replacement in durophagous placodont marine reptiles, with new data on the dentition of Chinese taxa. Journal of Anatomy 224:603613. doi: 10.1111/joa.12162.Google Scholar
Neenan, J. M., Li, C., Rieppel, O., and Scheyer, T. M.. 2015. The cranial anatomy of Chinese placodonts and the phylogeny of Placodontia (Diapsida: Sauropterygia). Zoological Journal of the Linnean Society 175:415428. doi: 10.1111/zoj.12277.Google Scholar
Nosotti, S., and Pinna, G.. 1999. Skull anatomy of Protenodontosaurus italicus Pinna 1990 (Reptilia, Placodontia). Paleontologia Lombard 11:317.Google Scholar
Owen, R. 1858. Description of the skull and teeth of the Placodus laticeps, Owen, with indications of other new species of Placodus, and evidence of the saurian nature of that genus. Philosophical Transactions of the Royal Society 148:169184.Google Scholar
Pinna, G. 1979. Il cranio di un giovane placochelide (Psephoderma alpinum Meyer, 1858) del Norico di Endenna (Bergamo). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano 120:195202.Google Scholar
Qasim, T., Bush, M., Hu, X., and Lawn, B. R.. 2005. Contact damage in brittle coating layers: influence of surface curvature. Journal of Biomedical Materials Research Part B 73:179185. doi: 10.1002/jbm.b.30188.Google Scholar
Rieppel, O. 1995. The genus Placodus: systematics, morphology, paleobiogeography, and paleobiology. Fieldiana: Geology 31:144.Google Scholar
Rieppel, O. 2000. Paraplacodus and the phylogeny of the Placodontia (Reptilia: Sauropterygia). Zoological Journal of the Linnean Society 130:635659. doi: 10.1006/zjls.2000.0232).Google Scholar
Rieppel, O. 2002. Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zoological Journal of the Linnean Society 135:3363.Google Scholar
Salamon, M. A., Niedźwiedzki, R., Przemysƚaw, G., Lach, R., and Surmik, D.. 2012. Bromolites from the middle Triassic of Poland and the rise of the Mesozoic marine revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 321–322:142150.Google Scholar
Scheyer, T. M., Neenan, J. M., Renesto, S., Saller, F., Hagdorn, H., Furrer, H., Rieppel, O., and Tintori, A.. 2012. Revised paleoecology of placodonts—with a comment on “The shallow marine placodont Cyamodus of the central European Germanic Basin: its evolution, paleobiogeography and paleoecology” by C. G. Diedrich (Historical Biology, iFirst article, 2011, 1–19, doi: 10.1080/08912963.2011.575938). Historical Biology 24:257267. doi: 10.1080/08912963.2011.621083.Google Scholar
Slizewski, A., Friess, M., and Semal, P.. 2010. Surface scanning of anthropological specimens: nominal-actual comparison with low cost laser scanner and high end fringe light projection surface scanning systems. Quartär 57:179187.Google Scholar
Stefani, M., Arduini, P., Garassino, A., Pinna, G., Teruzzi, G., and Trombetta, G. L.. 1992. Paleoenvironment of extraordinary fossil biotas from the Upper Triassic of Italy. Atti della Società Italiana di Scienze Naturale di Milano 132:309335.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 2008. Escalation and its role in Jurassic biotic history. Palaeogeography, Palaeoclimatology, Palaeoecology 263:38.Google Scholar
Vörös, A. 2010. Escalation reflected in ornamentation and diversity history of brachiopod clades during the Mesozoic marine revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 291:474480.Google Scholar
Wu, C. 2013. Towards linear-time incremental structure from motion. Pp. 127–134 in 3DV ’13: Proceedings of the 2013 International Conference on 3D Vision. IEEE Computer Society, Washington, D.C.Google Scholar
Wu, C., Agarwal, S., Curless, B., and Seitz, S. M.. 2011. Multicore bundle adjustment. Pp. 3057– 3064 in 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Washington, D.C.Google Scholar