Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T05:51:24.632Z Has data issue: false hasContentIssue false

Theoretical morphology of the Archosaur (Reptilia: Diapsida) pelvic girdle

Published online by Cambridge University Press:  08 February 2016

Diego Rasskin-Gutman
Affiliation:
Institute for Evolution and Cognition Research, Altenberg A-3422, Austria Universidad Autónoma de Madrid, Cantoblanco 28049, Spain. E-mail: [email protected]
Angela D. Buscalioni
Affiliation:
Unidad de Paleontologia, Departamento de Biologia, Universidad Autonoma de Madrid, Cantoblanco 28049, Spain. E-mail: [email protected]

Abstract

Theoretical models of skeletal structures provide suitable frameworks to assess macroevolutionary patterns of form change. We discuss three theoretical approaches to account for morphological patterns of the pelvic girdle in archosaurs. Every approach targets a different level of organization within the concept of morphospace. First, we build a morphocline by applying a mathematical transformation to the outline of the hip of the theropod dinosaur Deinonychus antirrhopus, in order to look at theoretical paths of evolutionary change based on changes of proportion. Second, we analyze the variability of a sample of 86 hips within a theoretical construction that incorporates information about the spatial orientation of the three paired bones that build this skeletal compound. Finally, we look at boundary patterns within these hips as a basis for generating a formalism based on graph theory. Insights about the evolution and development of the archosaur triradiate pelvis and its morphological trends are suggested in the light of each theoretical approach, with a special focus on the convergent evolution of a retroverted pubis in ornithischians and birds.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., and Gale, E. A. 1985. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution 39:823.CrossRefGoogle ScholarPubMed
Alexander, R. Mc. N. 1989. Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York.Google Scholar
Andrews, C. W. 1913. A descriptive catalogue of marine reptiles of the Oxford clay: Crocodiles, Part II. Monography. British Museum of Natural History, London.Google Scholar
Benton, M. J., and Clark, J. M. 1988. Archosaur phylogeny and the relationships of the Crocodylia. Pp. 295338in Benton, M. J., ed. The phylogeny and classification of the tetrapods, Vol. 1. Amphibians, reptiles, birds. Clarendon, Oxford.Google Scholar
Bonaparte, J. F. 1981. Descripción de “Fasolasuchus tenax” y su significado en la sistemática y evolución de los Thecodontia. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia III(2):55101.Google Scholar
Bookstein, F., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R. 1985. Morphometrics in evolutionary biology. Academy of Natural Sciences of Philadelphia Special Publication 15.Google Scholar
Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
Chapman, R. E., and Rasskin-Gutman, D. 2001. Quantifying morphology. In Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology II. Blackwell Science, Malden, Mass.(in press).Google Scholar
Charig, A. J. 1972. The evolution of the archosaur pelvis and hind-limb: an explanation in functional terms. Pp. 121155in Joysey, K. A. and Kemp, T. S., eds. Studies in vertebrate evolution. Winchester, New York.Google Scholar
Chatterjee, S. 1978. A primitive parasuchid (phytosaur) reptile from the Upper Triassic Maleri formation of India. Palaeontology 21:83127.Google Scholar
Chiappe, L. M. 1992. Osteología y sistemática de Patagopteryx delferrariisi Alvarenga y Bonaparte (Aves) del Cretácico de Patagonia. Filogenia e historia biogeográfica de las aves cretácicas de América del Sur. Ph.D. dissertation. Universidad Nacional de Buenos Aires, Buenos Aires.Google Scholar
Chiappe, L. M. 1995. The first 85 million years of avian evolution. Nature 378:349355.CrossRefGoogle Scholar
Chiappe, L. M., Norell, M. A., and Clark, J. M. 1998. The skull of a relative of the stem-group bird Mononykus. Nature 392:275278.CrossRefGoogle Scholar
Coombs, W. P. Jr. 1979. Osteology and myology of the hindlimb in the Ankylosauria (Reptilia, Ornithischia). Journal of Paleontology 53:666684.Google Scholar
Crush, P. J. 1984. A Late Upper Triassic sphenosuchid crocodilian from Wales. Palaeontology 27:131157.Google Scholar
Farmer, C. G., and Carrier, D. R. 2000. Pelvic aspiration in the American alligator (Alligator mississippiensis). Journal of Experimental Biology 203:16791687.CrossRefGoogle ScholarPubMed
Filla, J., and Redman, P. D. 1994. Apatosaurus yahnahpin: a preliminary description of a new species of diplodocid dinosaur from the Late Jurassic Morrison Formation of Southern Wyoming, the first sauropod dinosaur found with a complete set of “belly ribs.” Pp. 159178in Wyoming Geological Association Guidebook, 44th Annual Field Conference. Dinomation International Society, Boulder, Colo.Google Scholar
Galton, P. M. 1969. The pelvic musculature of the dinosaur Hypsilophodon (Reptilia: Ornithischia). Postilla 131:164.Google Scholar
Gatesy, S. M. 1995. Functional evolution of the hindlimb and tail from basal theropods to birds. Pp. 219234in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Gatesy, S. M. 1997. An electromyographic analysis of hindlimb function in Alligator during terrestrial locomotion. Journal of Morphology 234:197212.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Gatesy, S. M., and Dial, K. P. 1996. Locomotor modules and the evolution of avian flight. Evolution 50:331340.CrossRefGoogle ScholarPubMed
Gauthier, J. A., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105209.CrossRefGoogle ScholarPubMed
Goodrich, E. S. 1986. Studies on the structure and development of vertebrates. University of Chicago Press, Chicago.Google Scholar
Goodwin, B. C. 1963. Temporal organization in cells: a dynamic theory of cellular control processes. Academic Press, London.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Harary, F. 1969. Graph theory. Addison Wesley, Reading, Mass.CrossRefGoogle Scholar
Hou, L. 1995. Morphological comparisons between Confuciusornis and Archaeopteryx. Pp. 193201in Sun, A. and Wang, Y., eds. VI Symposium on Mesozoic terrestrial ecosystems and biota, Short papers. China Ocean, Beijing.Google Scholar
Kuhn, O., ed. 1970. Encyclopedia of paleoherpetology, Part 14. Saurischia. Gustav Fischer, Stuttgart.Google Scholar
Kuhn, O., ed. 1973. Encyclopedia of paleoherpetology, Part 16. Crocodylia. Gustav Fischer, Stuttgart.Google Scholar
Kuhn, O., ed. 1976. Encyclopedia of paleoherpetology, Part 13. Thecodontia. Gustav Fischer, Stuttgart.Google Scholar
Kuhn, O., ed. 1978. Encyclopedia of paleoherpetology, Part 19. Pterosauria. Gustav Fischer, Stuttgart.Google Scholar
Lessertisseur, J. 1966. L'angle ilio-sacré des reptiles aux mammifères: son interprétation, son intéret paléontologique. In Problèmes actuels de paléontologie, evolution des vertébrés. Colloques Internationaux du Centre National de la Recherche Scientifique 163:475481.Google Scholar
Lotka, A. J.[1924] 1956. Elements of mathematical biology. Reprint, Dover, New York. (Originally published as Elements of physical biology, Williams and Wilkins, Baltimore.)Google Scholar
Mandelbrot, B. B. 1983. The fractal geometry of nature. W. H. Freeman, New York.CrossRefGoogle Scholar
Marcus, L. F., Corti, M., Loy, A., Slice, D., and Naylor, G. 1996. Advances in morphometrics. NATO ASI Series, A 284. Plenum, New York.CrossRefGoogle Scholar
McGhee, G. R. Jr. 1999. Theoretical morphology: the concepts and its applications. Columbia University Press, New York.Google Scholar
McKitrick, M. C. 1993. Trends in the evolution of the hindlimb musculature in aerially foraging birds. Auk 110:189206.Google Scholar
Müller, G. B. 1990. Developmental mechanisms at the origin of morphological novelty: a side-effect hypothesis. Pp. 99130in Nitecki, M. H., ed. Evolutionary innovations. University of Chicago Press, Chicago.Google Scholar
Norell, M. A., and Makovicky, P. J. 1997. Important features of the dromaeosaur skeleton: information from a new specimen. American Museum Novitates 3215.Google Scholar
Norell, M. A., Chiappe, L. M., and Clark, J. 1993. New limb on the avian family tree. Natural History 102(9):3842.Google Scholar
Norman, D. 1985. The illustrated encyclopedia of dinosaurs. Salamander Books, London.Google Scholar
Novas, F. E. 1994a. New information on the systematics and postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. Journal of Vertebrate Paleontology 13:400423.CrossRefGoogle Scholar
Novas, F. E. 1994b. Origen de los dinosaurios. Investigación y Ciencia 217:5259.Google Scholar
Novas, F. E. 1996. Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. Journal of Vertebrate Paleontology 17:137166.CrossRefGoogle Scholar
Novas, F. E., and Puerta, P. F. 1997. Alvarezsauridae, Cretaceous basal birds from Patagonia and Mongolia. Memoirs of the Queensland Museum 39:675702.Google Scholar
Ostrom, J. H. 1976. On a new specimen of the Lower Cretaceous theropod dinosaur Deinonychus antirrhopus. Breviora 439:121.Google Scholar
Parrish, J. M. 1986. Locomotor adaptations in the hindlimb and pelvis of the Thecodontia. Hunteria 1(2):235.Google Scholar
Proctor, N. S., and Lynch, P. J. 1993. Manual of ornithology: avian structure and function. Yale University Press, New Haven, Conn.Google Scholar
Raikow, R. J. 1985. Locomotor system. Pp. 57147in King, A. S. and McLelland, J., eds. Form and function in birds, Vol. 3. Academic Press, London.Google Scholar
Rashevsky, N. 1944. Studies in the physicomathematical theory of organic form. Bulletin of Mathematical Biophysics 6:159.CrossRefGoogle Scholar
Rasskin-Gutman, D. 1995. Modelos geométricos y topológicos en morfología. Exploración de los límites del morfoespacio afín. Aplicaciones en paleobiología. Ph.D. dissertation. Universidad Autónoma de Madrid, Madrid.Google Scholar
Rasskin-Gutman, D. 1997. Pelvis, comparative anatomy. Pp. 536540in Currie, P. J. and Padian, K., eds. Encyclopedia of dinosaurs. Academic Press, San Diego.Google Scholar
Rasskin-Gutman, D., and Buscalioni, A. D. 1996. Affine transformation as a model of virtual form change for generating morphospaces. Pp. 169178in Marcus, et al. 1996.Google Scholar
Rogers, E. 1986. Looking at vertebrates: a practical guide to vertebrate adaptations. Longman Group Limit, Essex.Google Scholar
Romanoff, A. L. 1960. The avian embryo. Macmillan, New York.Google Scholar
Romer, A. S. 1923. Crocodilian pelvic muscles and their avian and reptilian homologues. Bulletin of the American Museum of Natural History 48:533552.Google Scholar
Romer, A. S. 1956. Osteology of the reptiles. University of Chicago Press, Chicago.Google Scholar
Rosas, A. 1992. Ontogenia y filogenia de la mandíbula en la evolución de los homínidos. Aplicación de un modelo de morfogénesis en las mandíbulas fósiles de Atapuerca. Ph.D. dissertation. Universidad Complutense de Madrid, Madrid.Google Scholar
Rosen, R. 1991. Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York.Google Scholar
Rowe, T. 1986. Homology and evolution of the deep dorsal thigh musculature in birds and other reptilia. Journal of Morphology 189:327346.CrossRefGoogle ScholarPubMed
Ruben, J. A., Jones, T. D., Geist, N. R., and Hillenius, W. J. 1997. Lung structure and ventilation in Theropod dinosaurs and early birds. Science 278:12671270.CrossRefGoogle Scholar
Sanz, J. L., Chiappe, L. M., Pérez-Moreno, B. P., Buscalioni, A. D., Moratalla, J. J., Ortega, F., and Poyato-Ariza, F. J. 1996. An early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature 382:442445.CrossRefGoogle Scholar
Sereno, P. C. 1991a. Basal archosaurs: phylogenetic relationships and functional implications. Journal of Vertebrate Paleontology Memoir (Suppl. to Vol. 11, No. 4).Google Scholar
Sereno, P. C. 1991b. Lesothosaurus, “Fabrosaurids,” and the early evolution of Ornithischia. Journal of Vertebrate Paleontology 11:168197.CrossRefGoogle Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.CrossRefGoogle ScholarPubMed
Sereno, P. C., and Arcucci, A. B. 1993. Dinosaurian precursors from the Middle Triassic of Argentina: Lagerpeton chanarensis. Journal of Vertebrate Paleontology 13:385399.CrossRefGoogle Scholar
Sereno, P. C., and Arcucci, A. B. 1994. Dinosaurian precursors from the Middle Triassic of Argentina: Marasuchus lilloensis, gen. nov. Journal of Vertebrate Paleontology 14:5373.CrossRefGoogle Scholar
Sereno, P. C., and Rao, C. H. 1992. Early evolution of avian flight perching: new evidence from the Lower Cretaceous of China. Science 255:845848.CrossRefGoogle ScholarPubMed
Shubin, N., and Alberch, P. 1986. A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evolutionary Biology 20:319387.Google Scholar
Sommerhoff, G. 1950. Analytical biology. Oxford University Press, London.Google Scholar
Starck, J. M. 1993. Evolution of avian ontogenesis. Pp. 275366in Power, D. E., ed. Current ornithology, Vol. 10. Plenum, New York.CrossRefGoogle Scholar
Thom, R.[1972] 1977. Stabilité structurelle et morphogenèse: essai d'une théorie générale des modèles, 2d ed.Inter Editions, Paris.Google Scholar
Thompson, D'A. W.[1917] 1942. On growth and form, new ed.Cambridge University Press, London.Google Scholar
Waddington, C. H., ed. 1968. Towards a theoretical biology. Edinburgh University Press, Edinburgh.CrossRefGoogle ScholarPubMed
Walker, A. D. 1977. Evolution of the pelvis in birds and dinosaurs. Pp. 319357in Andrews, S. M., Miles, R. S., and Walker, A. D., eds. Problems in vertebrate evolution. Academic Press, San Diego.Google Scholar
Weishampel, D., Dodson, P., and Osmólska, H., eds. 1990. The Dinosauria. University of California Press, Berkeley.Google Scholar
Wellnhofer, P. 1985. Remarks on the digit and pubis problem of Archaeopteryx. Pp. 113122in Hecht, M. K. et al., eds. The beginnings of birds. Proceedings of the International Archaeopteryx Conference, 1984, Eichstätt. Freunde des Jura-Museums Eichstätt, Eichstätt.Google Scholar
Wellnhofer, P. 1991. Additional pterosaur remains from the Santana Formation (Aptian) of the Chapada do Ararripe, Brazil. Palaeontographica 215:43101.Google Scholar
Wimsatt, W. C. 1987. False models as means to truer theories. Pp. 2355in Nitecki, M. and Hoffman, A., eds. Neutral models in biology. Oxford University Press, London.Google Scholar
Woodger, J. H. 1937. The axiomatic method in biology. Cambridge University Press, Cambridge.Google Scholar
Xu, X., Tang, Z., and Wang, X. 1999. A therizinosauroid dinosaur with integumentary structures from China. Nature 399:350354.CrossRefGoogle Scholar