Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T03:20:57.973Z Has data issue: false hasContentIssue false

Theoretical diversity of the marine biosphere

Published online by Cambridge University Press:  08 April 2016

Michał Kowalewski
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061. E-mail: [email protected]
Seth Finnegan
Affiliation:
Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305. E-mail: [email protected]

Extract

In considering the history of biodiversity paleontologists have focused on exploratory investigations of empirical data derived from the fossil record. Starting with the pioneering work of Philips (1860), and continuing at an increasing pace through today, this inductive approach has dominated diversity research. In contrast, deductive theoretical considerations that focus on the expected history of biodiversity, and develop independently of empirical knowledge, have remained under-explored. Appreciating the need for a nomothetic paleobiology (Gould 1980), we here reconsider the history of biodiversity, using deductive models constrained by a few, self-evident parameters. This analysis centers on the marine fossil record, the primary target of most previous empirical studies on the geological history of global biodiversity (e.g., Valentine 1969; Raup 1972, 1976; Sepkoski et al. 1981; Alroy et al. 2008).

Type
Matters of the Record
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, A. P., Brown, J. H., and Gillooly, J. F. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:15451548.Google Scholar
Allison, P. A., and Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species-diversity, and the end-Permian extinction. Geology 21:6568.2.3.CO;2>CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nuernberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.Google Scholar
Belgrano, A., Allen, A. P., Enquist, B. J., and Gillooly, J. F. 2002. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecology Letters 5:611613.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Bouchet, P., Lozouet, P., Maestrati, P., and Heros, V. 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society 75:421436.Google Scholar
Bouchet, P., Lozouet, P., and Sysoev, A. 2009. An inordinate fondness for turrids. Deep Sea Research Part II: Topical Studies in Oceanography 56:17241731.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veil of taphonomic, latitudinal, and environmental biases in the study of paleocommunities. Journal of Geology 112:625642.Google Scholar
Cherns, L. V. P., and Wright, P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.Google Scholar
Chow, S. S., Wilke, C. O., Ofria, C., Lenski, R. E., and Adami, C. 2004. Adaptive radiation from resource competition in digital organisms. Science 305:8486.Google Scholar
Clarke, A., and Gaston, K. J. 2006. Climate, energy and diversity. Proceeding of the Royal Society of London B 273:22572266.Google ScholarPubMed
Cohen, J. E. 1995. How many people can the Earth support? Norton, New York.Google Scholar
Damuth, J. 1981. Population-density and body size in mammals. Nature 290:699700.Google Scholar
Damuth, J. 1987. Interspecific allometry of population density in mammals and other animals. Biological Journal of the Linnean Society 31:193246.Google Scholar
Drake, F., and Sobel, D. 1992. Is anyone out there? The scientific search for extraterrestrial intelligence. Delacorte, New York.Google Scholar
Dugan, J. E., Hubbard, D. M., and Page, H. M. 1995. Scaling population density to body size: tests in two soft-sediment intertidal communities. Journal of Coastal Research 11:849857.Google Scholar
Erwin, D. H. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology and Evolution 23:304310.Google Scholar
Finnegan, S., and Droser, M. L. 2005. Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology 31:480502.Google Scholar
Garrison, T. 2005. Oceanography: an invitation to marine science. Thomson Brooks/Cole, Belmont, Calif. Google Scholar
Gould, S. J. 1980. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology 6:96118.CrossRefGoogle Scholar
Grassle, J. F., and Maciolek, N. J. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. American Naturalist 139:313341.CrossRefGoogle Scholar
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:5162.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C., and Stetter, K. O. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:6367.Google Scholar
Hunt, G., Cronin, T. M., and Roy, K. 2005. Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters 8:739747.Google Scholar
Huntley, J. W., and Kowalewski, M. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2003. The impact of the pull of the recent on the history of marine diversity. Science 300:11331135.Google Scholar
Kerr, S. R., and Dickie, L. M. 2001. The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, New York.Google Scholar
Kowalewski, M., and Flessa, K. W. 1996. Improving with age: the fossil record of lingulide brachiopods and the nature of taphonomic megabiases. Geology 24:977980.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Lambshead, P. J. 1993. Recent developments in marine benthic biodiversity research. Océanis 19:524.Google Scholar
MacArthur, R.W., and Wilson, E. O. 1967. The equilibrium theory of island biogeography. Princeton University Press, Princeton, N.J. Google Scholar
Marquet, P. A., Navarrete, S. A., and Castilla, J. C. 1990. Scaling population density to body size in rocky intertidal communities. Science 250:11251127.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Niklas, K. J. 1997. Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants. Paleobiology 23:6376.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., and Knoll, A. H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:6385.CrossRefGoogle Scholar
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A. Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106:2427.Google Scholar
Peters, S. E. 2006. Macrostratigraphy of North America. Journal of Geology 114:391412.CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Phillips, J. 1860. Life on the earth; its origin and succession. Macmillan, Cambridge.Google Scholar
Powell, M. G. 2007. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Global Ecology and Biogeography 16:519528.Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334 Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling; general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
Raup, D. M., and Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Systematists follow the fossils. Paleobiology 3:325329.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 2000. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proceedings of the Royal Society of London B 267:293299.Google Scholar
Sala, E., and Knowlton, N. 2006. Global marine biodiversity trends. Annual Review of Environment and Resources 31:93122.CrossRefGoogle Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.Google Scholar
Seilacher, A. 1974. Fossil-Vergesellschaftungen 20, flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4:233245.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity: a strong signal from the fossil record. Nature 293:435437.Google Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.Google Scholar
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765774.CrossRefGoogle Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoir 4. Paleobiology 33(Suppl. to No. 4).Google Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144:319.Google Scholar
Stanley, S. M., and Powell, M. G. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31:877880.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha. Paleobiology 35:94118.Google Scholar
Torrella, F., and Morita, R. Y. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Applied and Environmental Microbiology 41:518527.Google Scholar
Trotter, J. A., Williams, I. S., Barnes, C. R., Lecuyer, C., and Nicoll, R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550554.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation; an ecological history of life. Princeton University Press, Princeton, N.J. Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar