Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T18:44:56.510Z Has data issue: false hasContentIssue false

Testing the plateau: a reexamination of disparity and morphologic constraints in early Paleozoic crinoids

Published online by Cambridge University Press:  08 April 2016

Bradley Deline
Affiliation:
Department of Geosciences, University of West Georgia, Carrollton, Georgia 30118. E-mail: [email protected]
William I. Ausich
Affiliation:
School of Earth Sciences, 125 South Oval, Ohio State University, Columbus, Ohio 43210. E-mail: [email protected]

Abstract

Studies of crinoid morphology have been pivotal in understanding the constraints on the range of morphology within a clade as well as the patterns of disparity throughout the Phanerozoic. Newly discovered and described faunas and recent study of early Paleozoic crinoid diversity provide an ideal opportunity to reanalyze Ordovician through Early Silurian crinoid disparity with more complete taxonomic coverage and finer stratigraphic resolution. Using the coarse stratigraphic binning of Foote (1999), the updated morphologic data set has a similar disparity pattern to those previously reported for the early Paleozoic. However, with the more resolved stratigraphic binning used by Peters and Ausich (2008), a significant difference exists between the original and current data sets. Both data sets have a pronounced disparity high during the late Middle Ordovician. However, the updated disparity curve has a much higher initial disparity during the Early Ordovician and a pronounced rise in disparity during the Silurian recovery. Examination of differential sampling, proportions of the crinoid orders through time, and methods of coding characters indicate these factors have little effect on the pattern of crinoid disparity. The Silurian morphospace expansion occurs primarily within disparids and coincides with the origination of the myelodactylids. These findings corroborate the rapid expansion of morphospace during the Ordovician. However, crinoid disparity did not remain static and, although less frequent than during the initial radiation, new body plans evolved following the Ordovician Extinction (e.g., the myelodactylids). These results are consistent with the hypothesis of ecology constraining the limits on morphologic disparity at the class level.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ausich, W. I. 1986. The crinoids of the Al Rose Formation (Early Ordovician, Inyo County, California, United States of America). Alcheringa 10:217224.Google Scholar
Ausich, W. I. 1998. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology 41:193202.Google Scholar
Ausich, W. I. 2001. Echinoderm taphonomy. Pp. 171227 in Jangoux, M. and Lawrence, J. M., eds. Echinoderm Studies 6, A.A. Balkema, Rotterdam.Google Scholar
Ausich, W. I., and Copper, P. 2010. The Crinoidea of Anticosti Island, Quebec (Late Ordovician to Early Silurian). Palaeontographica Canadiana 29.Google Scholar
Ausich, W. I., and Peters, S. E. 2005. A revised macroevolutionary history of Ordovician–Early Silurian crinoids. Paleobiology 31:538551.Google Scholar
Ausich, W. I., Kammer, T. W., and Baumiller, T. K. 1994. Demise of the middle Paleozoic crinoid fauna; a single extinction event or rapid faunal turnover? Paleobiology 20:345361.Google Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.Google Scholar
Bergström, S. M., Finney, S., Xu, C., Goldman, D., and Leslie, S. A. 2006. Three new Ordovician global stage names. Lethaia 39:287288.CrossRefGoogle Scholar
Brenchley, P. J. 2003. End Ordovician glaciation. Pp. 8183 in Webby, B. D., Droser, M. L., Paris, F., and Percival, I., eds. The great Ordovician biodiversification event. Columbia University Press, New York.Google Scholar
Brenchley, P. J., Marshall, J. D., and Underwood, C. J. 2001. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal 36:329340.CrossRefGoogle Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia 14:343370.Google Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L. 1997. Echinoderm taphonomy, taphofacies and lagerstätten. Pp. 147190 in Maples, C. and Waters, J., eds. Geobiology of echinoderms. Paleontological Society Special Paper 3:147190. Paleontology Society, Pittsburgh.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992a. Cambrian and Recent morphological disparity. Science 258:18171818.CrossRefGoogle Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992b. Morphological disparity in the Cambrian. Science 256:16701673.Google Scholar
Brower, J. C., and Veinus, J. 1974. Middle Ordovician crinoids from southwestern Virginia and Eastern Tennessee. Bulletins of American Paleontology 66:1125.Google Scholar
Ciampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from crinoid and blastozoan fossil record. Evolution and Development 4:170188.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N. 2004. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation? Evolution and Development 6:260274.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.2.0.CO;2>CrossRefGoogle Scholar
Deline, B. 2009. The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology 35:175189.Google Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment. Pp. 241269 in Donovan, S. K., ed. Advances in the processes of fossilization. Belhaven Press, London.Google Scholar
Donovan, S. K. 1992. Scanning EM study of the living cyrtocrinid Holopus rangii (Echinodermata, Crinoidea) and implications for its functional morphology. Journal of Paleontology 66:665675.CrossRefGoogle Scholar
Donovan, S. K., and Franzén-Bengtson, C. 1988. Myelodactylid crinoid columnals from the Lower Visby Beds (Llandoverian) of Gotland. Geologiska Föreningens i Stockholm Förhandlingar 110:6980.CrossRefGoogle Scholar
Donovan, S. K., and Pawson, D. L. 2008. A new species of the sessile crinoid Holopus d'Orbigny from the tropical western Atlantic, with comment on holopodid ecology (Echinodermata: Crinoidea: Holopodidae). Zootaxa 1717:3138.CrossRefGoogle Scholar
Donovan, S. K., and Sevastopulo, G. D. 1989. Myelodactylid crinoids from the Silurian of the British Isles. Paleontology 32:689710.Google Scholar
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.2.0.CO;2>CrossRefGoogle Scholar
Eble, G. J. 2003. Developmental morphospaces and evolution. Pp. 3565 in Crutchfield, J. P., and Schuster, P., eds. Evolutionary dynamics: exploring the interplay of selection, accident, neutrality and function. Oxford University Press, Oxford.Google Scholar
Eckert, J. D. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia 21:147167.Google Scholar
Eckert, J. D., and Brett, C. E. 1985. Taxonomy and paleoecology of the Silurian myelodactylid crinoid Crinobrachiatus brachiatus (Hall). Royal Ontario Museum Life Sciences Contributions 141:115.Google Scholar
Efron, B. 1982. The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:11771186.Google Scholar
Finney, S. 2005. Global series and stages for the Ordovician System: a progress report. Geologica Acta 3:309316.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1993a. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1993b. Discordance and concordance between morphologic and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs 25:1115.CrossRefGoogle Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parks, M. A., Rushton, A. W. A., and Woodcock, N. H. 2000. A revised correlation of Ordovician rocks in the British Isles. Geological Society of London Special Report 24:183.Google Scholar
Frest, T. J., and Strimple, H. L. 1978. The flexible crinoid genus Anisocrinus (Ordovician- Silurian) in North America. Journal of Paleontology 52:683696.Google Scholar
Gahn, F. J., Sprinkle, J., and Guensburg, T. E. 2006. Garden City of echinoderms: a new Early Ordovician Lagerstätte from Idaho and Utah. Geological Society of America Abstracts with Programs 38:383.Google Scholar
Gower, J. C. 1971. A General coefficient of similarity and some of its properties. Biometrics 27:857874.Google Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Guensburg, T. E., and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology 364:143.Google Scholar
Hagdorn, H., and Campbell, H. J. 1993. Paracromatula triaica sp. nov.—an early comatulid crinoid from the Otapirian (Late Triassic) of New Caledonia. Alcheringa 17:117.CrossRefGoogle Scholar
Hambrey, M. J. 1985. The Late Ordovician-Early Silurian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 51:273289.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Heinzeller, T., Fricke, H., Bourseau, J., Améziane-Cominardi, N., and Welsch, E. 1996. Cyathidium plantei sp. n., an extant cyrtocrinid (Echinodermata, Crinoidea)—morphologically identical to the fossil Cyathidium depressum (Cretaceous, Cenomanian). Zoologica Scripta 25:7784.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 1997. Distal orogenic effects on peripheral bulge sedimentation; Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research 67:250263.Google Scholar
Jernvall, J., Hunter, J. P., and Fortelius, M. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:14891492.Google Scholar
Kammer, T. W., and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology 13:379395.CrossRefGoogle Scholar
Kirkpatrick, M., and Lofsvold, D. 1992. Measuring selection and constraint in the evolution of growth. Evolution 46:954971.Google Scholar
Kolata, D. R. 1976. Crinoids from the Upper Ordovician Bighorn Formation of Wyoming. Journal of Paleontology 50:444453.Google Scholar
Lee, M. S. Y. 1992. Cambrian and Recent morphological disparity. Science 258:18161817.CrossRefGoogle ScholarPubMed
Li, Y., Wang, F., Lee, J-A., and Gao, F-B. 2006. MicroRNA–9a ensures the precise specification of sensory organ precursors in Drosophila . Genes and Development 20:27932805.CrossRefGoogle ScholarPubMed
Lofgren, A. S., Plotnick, R. E., and Wagner, P. J. 2003. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 29:349368.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Magnus, D. B. E. 1963. Der Federstern Heterometra savignyi im Roten Meer. Natur und Museum 93:355394.Google Scholar
Makeyev, E. V., and Maniatis, T. 2008. Multilevel regulation of gene expression by MicroRNAs. Science 319:17891790.CrossRefGoogle ScholarPubMed
McGowan, A. J. 2004. Ammonoid taxonomic and morphologic recovery patterns after the Permian-Triassic. Geology 32:665668.Google Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.Google Scholar
Meyer, D. L., Miller, A. I., Holland, S. M., and Dattilo, B. F. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview Formations, Upper Ordovician, Cincinnati Arch Region. Journal of Paleontology 76:725732.Google Scholar
Neige, P. 2003. Spatial patterns of disparity and diversity of the Recent cuttlefishes (Cephalopoda) across the Old World. Journal of Biogeography 30:11251137.Google Scholar
O'Meara, B. C., Ané, C., Sanderson, M. J., and Wainwright, P. C. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922933.Google Scholar
Owen, A. W., and Robertson, D. B. R. 1995. Ecological changes during the end-Ordovician extinction. Modern Geology 20:2139.Google Scholar
Peters, S. E., and Ausich, W. I. 2008. A sampling-standardized macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology 34:104116.Google Scholar
Peterson, K. J., Dietrich, M. R., and McPeek, M. A. 2009. miRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. BioEssays 31:736747.Google Scholar
R Development Core Team. 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Rosenzweig, M. L., and McCord, R. D. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202213.Google Scholar
Roy, K., and Foote, M. 1997. Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution 12:277281.Google Scholar
Schopf, T. J. M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology 4:261269.Google Scholar
Seilacher, A. 1990. Taphonomy of fossil-lagerstätten: overview. Pp. 266270 in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology: a synthesis. Blackwell Scientific, Oxford.Google Scholar
Sheehan, P. M., and Coorough, P. J. 1990. Brachiopod zoogeography across the Ordovician-Silurian extinction event. In McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society of London Memoir 12:181190.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Paleontology 36:91109.Google Scholar
Slocum, A. W., and Foerste, A. F. 1924. New echinoderms from the Maquoketa beds of Fayette Country, Iowa. Iowa Geological Survey 29 (Annual Report for 1919 and 1920):315384.Google Scholar
Sprinkle, J., and Guensburg, T. E. 2004. Crinozoan, blastozoan, echinozoan, asterozoan, and homalozoan echinoderms. Pp. 266280 in Webby, B. D., Droser, M. L., Paris, F., and Percival, I., eds. The great Ordovician biodiversification event. Columbia University Press, New York.Google Scholar
Stanley, S. M., and Hardie, L. A. 1999. Hypercalcification: paleontological links plate tectonics and geochemistry to sedimentology. GSA Today 9:17.Google Scholar
Stefani, G., and Slack, F. J. 2008. Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology 9:219230.Google Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10:190194.Google Scholar
Valentine, J. W. 2004. On the origin of phyla. University of Chicago Press, Chicago.Google Scholar
Valentine, J. W., and Jablonski, D. 2003. Morphological and developmental macroevolution: a paleontological perspective. International Journal of Developmental Biology 47:517522.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among Rostroconchia. Paleobiology 23:115150.Google Scholar
Webster, M. A. 2007. A Cambrian peak in morphologic variation within trilobite species. Science 317:499502.Google Scholar
Wills, M. A. 1998. Cambrian and Recent disparity: the picture from priapulids. Paleobiology 24:177199.Google Scholar