Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T18:12:46.903Z Has data issue: false hasContentIssue false

Ten years in the library: new data confirm paleontological patterns

Published online by Cambridge University Press:  08 February 2016

J. John Sepkoski Jr.*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637

Abstract

A comparison is made between compilations of times of origination and extinction of fossil marine animal families published in 1982 and 1992. As a result of ten years of library research, half of the information in the compendia has changed: families have been added and deleted, low-resolution stratigraphic data have been improved, and intervals of origination and extinction have been altered. Despite these changes, apparent macroevolutionary patterns for the entire marine fauna have remained constant. Diversity curves compiled from the two data bases are very similar, with a goodness-of-fit of 99%; the principal difference is that the 1992 curve averages 13% higher than the older curve. Both numbers and percentages of origination and extinction also match well, with fits ranging from 83% to 95%. All major events of radiation and extinction are identical. Therefore, errors in large paleontological data bases and arbitrariness of included taxa are not necessarily impediments to the analysis of pattern in the fossil record, so long as the data are sufficiently numerous.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D. 1992. Genera in paleontology: definition and significance. Historical Biology 6:149158.CrossRefGoogle Scholar
Bengtson, S. 1992. Proterozoic and earliest Cambrian skeletal metazoans. Pp. 10171033in Schopf, J. W. and Klein, C., eds. The Proterozoic biosphere. A multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Boyajian, G. F. 1986. Phanerozoic trends in background extinction: consequence of an aging fauna. Geology 14:955958.2.0.CO;2>CrossRefGoogle Scholar
Bujak, J. P., and Williams, G. L. 1979. Dinoflagellate diversity through time. Marine Micropaleontology 4:112.CrossRefGoogle Scholar
Cappetta, H. 1987. Extinctions et renouvellements fauniques chez les Sélechiens post-jurassique. Mémoires de la Société Géologique de France, N.S. 150:113131.Google Scholar
Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper water faunas. Transactions of the Royal Society of Edinburgh 80:271284.CrossRefGoogle Scholar
Culver, S. J., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology 13:169176.CrossRefGoogle Scholar
Debrenne, F., Rozanov, A. Yu., and Zhuravlev, A. 1990. Regular archaeocyaths. Morphology, systematics, biostratigraphy, palaeogeography, biological affinities. Editions du CNRS, Paris.Google Scholar
Durham, J. W. 1967. The incompleteness of our knowledge of the fossil record. Journal of Paleontology 41:559565.Google Scholar
Erwin, D. H. 1990. The end-Permian mass extinction. Annual Review of Ecology and Systematics 21:6991.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 4:11771186.CrossRefGoogle Scholar
Flessa, K. W., Erben, H. K., Hallam, A., Hsü, K. J., Hüssner, H. M., Jablonski, D., Raup, D. M., Sepkoski, J. J. Jr., Soulé, M. E., Sousa, W., Stinnesbeck, W., and Vermeij, G. J. 1986. Causes and consequences of extinction. Pp. 235257in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.Google Scholar
Gilinsky, N. L., and Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427445.CrossRefGoogle Scholar
Gilinsky, N. L., and Signor, P. W., eds. 1991. Analytical paleobiology. Short Courses in Paleontology, 4. The Paleontological Society, Knoxville, Tenn.Google Scholar
Grant, R. E. 1980. The human face of the brachiopod. Journal of Paleontology 54:499507.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Holman, E. W. 1989. Some evolutionary correlates of higher taxa. Paleobiology 15:357363.CrossRefGoogle Scholar
Kitchell, J. A., and Carr, T. R. 1985. Nonequilibrium model of diversification: faunal turnover dynamics. Pp. 277309in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Loeblich, A., and Tappan, H. 1988. Foraminiferal genera and their classification. Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1991. Estimation of taxonomic ranges from the fossil record. Pp. 1938in Gilinsky and Signor 1991.Google Scholar
Maxwell, W. D., and Benton, M. J. 1990. Historical tests of the absolute completeness of the fossil record of tetrapods. Paleobiology 16:322335.CrossRefGoogle Scholar
McKinney, M. L. 1987. Taxonomic selectivity and continuous variation in mass and background extinctions of marine taxa. Nature (London) 325:143145.CrossRefGoogle Scholar
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature (London) 330:248251.CrossRefGoogle Scholar
Patterson, C. 1989. Periodicity in extinction: the role of systematics. Ecology 70:802811.CrossRefGoogle Scholar
Phillips, J. 1860. Life on earth: its origin and succession. Macmillan, Cambridge.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science (Washington, D.C.) 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.CrossRefGoogle Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M. 1989. The case for extraterrestrial causes of extinction. Philosophical Transactions of the Royal Society of London, Series B 325:421435.Google ScholarPubMed
Raup, D. M. 1991. The future of analytical paleobiology. Pp. 207216in Gilinsky and Signor 1991.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science (Washington, D.C.) 215:15011503.CrossRefGoogle ScholarPubMed
Raup, D. M. 1984. Periodicity of extinction in the geologic past. Proceedings of the National Academy of Sciences, U.S.A. 81:801805.CrossRefGoogle ScholarPubMed
Romer, A. S. 1933. Vertebrate paleontology. University of Chicago Press, Chicago.Google Scholar
Rozanov, A. Yu. 1986. Problematica of the Early Cambrian. Pp. 8796in Hoffman, A. and Nitecki, M. H., eds. Problematic fossil taxa. Oxford University Press, New York.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.Google Scholar
Sepkoski, J. J. Jr. 1981a. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981b. The uniqueness of the Cambrian fauna. Pp. 203207in Taylor, M. E., ed. Short papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open-File Report 81–743.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology 51.Google Scholar
Sepkoski, J. J. Jr. 1987. Is the periodicity of extinctions a taxonomic artefact? Response. Nature (London) 330:251252.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1991. Population biology models in macroevolution. Pp. 136156in Gilinsky and Signor 1991.Google Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2d ed.Milwaukee Public Museum Contributions in Biology and Geology 83.Google Scholar
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity of marine extinction events. Pp. 336in Elliot, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Sepkoski, J. J. Jr., and Schopf, J. W. 1992. Biotic diversity and rates of evolution during Proterozoic and earliest Phanerozoic time. Pp. 521566in Schopf, J. W. and Klein, C., eds. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature (London) 293:435437.CrossRefGoogle Scholar
Sheng, J.-Z., Chen, C.-Z., Wang, Y.-G., Rui, L. Liao, Z.-T., Bando, Y., Ishi, K., Nakazawa, K., and Nakamura, K. 1984. Permian-Triassic boundary in middle and eastern Tethys. Journal of the Faculty of Sciences of Hokkaido University, series IV 21:133181.Google Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Reviews of Ecology and Systematics 21:509539.CrossRefGoogle Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Pp. 291296in Silver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.CrossRefGoogle Scholar
Stanley, S. M. 1984. Marine mass extinctions: a dominant role for temperature. Pp. 69177in Nitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimations of the Western Atlantic bivalve fauna. Palaios 1:1736.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989. Confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:911927.CrossRefGoogle Scholar
Teichert, C. 1956. How many fossil species? Journal of Paleontology 30:967969.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature (London) 307:5052.CrossRefGoogle Scholar
Van Valen, L. M. 1985. How constant is extinction? Evolutionary Theory 7:93106.Google Scholar
Vermeij, G. J. 1986. Survival during biotic crises: the properties and evolutionary significance of refuges. Pp. 231246in Elliot, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar