Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T18:18:59.092Z Has data issue: false hasContentIssue false

Temporal dynamics of encrusting communities during the Late Devonian: a case study from the Central Devonian Field, Russia

Published online by Cambridge University Press:  22 June 2017

Michał Zatoń
Affiliation:
Department of Paleontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia, Będzińska 60, PL-41-200 Sosnowiec, Poland. E-mail: [email protected]
Tomasz Borszcz
Affiliation:
Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Michał Rakociński
Affiliation:
Department of Paleontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia, Będzińska 60, PL-41-200 Sosnowiec, Poland. E-mail: [email protected]

Abstract

In this study we focused on the dynamics of encrusting assemblages preserved on brachiopod hosts collected from upper Frasnian and lower Famennian deposits of the Central Devonian Field, Russia. Because the encrusted brachiopods come from deposits bracketing the Frasnian/Famennian (F/F) boundary, the results also shed some light on ecological differences in encrusting communities before and after the Frasnian–Famennian (F-F) event. To explore the diversity dynamics of encrusting assemblages, we analyzed more than 1300 brachiopod valves (substrates) from two localities. Taxon accumulation plots and shareholder quorum subsampling (SQS) routines indicated that a reasonably small sample of brachiopod host valves (n=50) is sufficient to capture the majority of the encrusting genera recorded at a given site. The richness of encrusters per substrate declined simultaneously with the number of encrusting taxa in the lower Famennian, accompanied by a decrease in epibiont abundance, with a comparable decrease in mean encrustation intensity (percentage of bioclasts encrusted by one or more epibionts). Epibiont abundance and occupancy roughly mirror each other. Strikingly, few ecological characteristics are correlated with substrate size, possibly reflecting random settlement of larvae. Evenness, which is negatively correlated with substrate size, shows greater within-stage variability among samples than between Frasnian and Famennian intervals and may indicate the instability of early Famennian biocenoses following the faunal turnover. The occurrence distribution of encrusters points to nonrandom associations and exclusions among several encrusting taxa. However, abundance and occupancy of microconchids remained relatively stable throughout the sampled time interval. The notable decline in abundance (~60%) and relatively minor decline in diversity (~30%) suggest jointly that encrusting communities experienced ecological collapse rather than a major mass extinction event. The differences between the upper Frasnian and lower Famennian encrusting assemblages may thus record a turnover associated with the F-F event.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alekseev, A. S, Kononova, L. I., and Nikishin, A. M.. 1996. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): stratigraphy and sea-level changes. Tectonophysics 268:149168.CrossRefGoogle Scholar
Alroy, J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In J. Alroy, and G. Hunt, eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:5580. Yale Printing Services, New Haven, Conn.Google Scholar
Alroy, J. 2015. A new twist on a very old binary similarity coefficient. Ecology 96:575586.CrossRefGoogle ScholarPubMed
Alroy, J. 2016. John Alroy’s home page, Macroecology and Macroevolution, Macquarie University. http://bio.mq.edu.au/~jalroy, accessed: 11 April 2016.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A.. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alvarez, F., and Taylor, P. D.. 1987. Epizoan ecology and interactions in the Devonian of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 61:1731.CrossRefGoogle Scholar
Aristov, V. A. 1988. Devonian conodonts from the Central Devonian Field. Nauka, Moscow.Google Scholar
Baliński, A., and Racki, G.. 1981. Environmental interpretation of the atrypid shell beds from the Middle to Upper Devonian boundary of the Holy Cross Mts and Cracow Upland. Acta Geologica Polonica 31:177211.Google Scholar
Barclay, K. M., Schneider, C. L., and Leighton, L. R.. 2013. Palaeoecology of Devonian sclerobionts and their brachiopod hosts from the Western Canadian Sedimentary Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 383−384:7991.CrossRefGoogle Scholar
Barclay, K. M., Schneider, C. L., and Leighton, L. R.. 2015. Mapping sclerobiosis: a new method for interpreting the distribution, biological implications, and paleoenvironmental significance of sclerobionts on biotic hosts. Paleobiology 41:592609.CrossRefGoogle Scholar
Barnes, D. K. A. 2006. Temporal-spatial stability of competition in marine boulder fields. Marine Ecology Progress Series 314:1523.CrossRefGoogle Scholar
Barnes, D. K. A., and Kukliński, P.. 2003. High polar spatial competition: extreme hierarchies at extreme latitude. Marine Ecology Progress Series 259:1728.CrossRefGoogle Scholar
Barnes, D. K. A., and Kuklinski, P.. 2004a. Scale-dependent variation in competitive ability among encrusting Arctic species. Marine Ecology Progress Series 275:2132.CrossRefGoogle Scholar
Barnes, D. K. A., and Kuklinski, P.. 2004b. Variability of competition at scales of 10(1), 10(3), 10(5), and 10(6) m: encrusting Arctic community patterns. Marine Biology 145:361372.CrossRefGoogle Scholar
Barnes, D. K. A., and Kuklinski, P.. 2005. Bipolar patterns of intraspecific competition in bryozoans. Marine Ecology Progress Series 285:7587.CrossRefGoogle Scholar
Barnes, D. K. A., and Peck, L. S.. 1996. Epibiota and attachment substrata of deep-water brachiopods from Antarctica and New Zealand. Philosophical Transactions of the Royal Society of London B 351:677687.Google Scholar
Barnes, D. K. A., and Peck, L. S.. 1997. An Antarctic shelf population of the deep-sea, Pacific brachiopod Neorhynchia strebeli . Journal of the Marine Biological Association of the United Kingdom 77:399407.CrossRefGoogle Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and McBrinn, G.. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278:15891594.CrossRefGoogle ScholarPubMed
Berkowski, B. 2001. Famennian colonial Rugosa from southern Poland. Recovery and extinction. Bulletin of the Tohoku University Museum 1:285290.Google Scholar
Berkowski, B. 2002. Famennian Rugosa and Heterocorallia from southern Poland. Palaeontologia Polonica 61:388.Google Scholar
Berkowski, B., Zapalski, M. K., and Wrzołek, T.. 2016. New Famennian colonial coral (Rugosa) from the Holy Cross Mountains (Poland): an example of local evolution after Frasnian−Famennian extinction. Science of Nature 103:33.CrossRefGoogle ScholarPubMed
Bitner, M. A. 1996. Encrusters and borers of brachiopods from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Research 17:2128.Google Scholar
Bordeaux, Y. L., and Brett, C. E.. 1990. Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology. Historical Biology 4:203220.CrossRefGoogle Scholar
Borszcz, T. 2012. Echinoids as substrates for encrustation—review and quantitative analysis. Annales Societatis Geologorum Poloniae 82:139149.Google Scholar
Borszcz, T., Kuklinski, P., and Zatoń, M.. 2013. Encrustation patterns on Late Cretaceous (Turonian) echinoids from southern Poland. Facies 59:299318.CrossRefGoogle Scholar
Brett, C. E., and Walker, S. E.. 2002. Predators and predation in Paleozoic marine environments. Paleontological Society Papers 8:93118.CrossRefGoogle Scholar
Brett, C. E., Ivany, L. C., and Schopf, K. M.. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 23:120.CrossRefGoogle Scholar
Brett, C. E., Smrecak, T., Parsons-Hubbard, K., and Walker, S.. 2012. Marine sclerobiofacies: encrusting and endolithic communities on shells through time and space. Pp. 129157 in J. D. Talent, ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time (international year of planet Earth). Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Bush, A. M., and Brame, R. I.. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.CrossRefGoogle Scholar
Buss, L. W. 1979. Bryozoan overgrowth interactions: the interdependence of competition for space and food. Nature 281:475477.CrossRefGoogle Scholar
Clapham, M. E., and Bottjer, D. J.. 2007. Prolonged Permian−Triassic ecological transition recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy Sciences USA 104:1297112975.CrossRefGoogle ScholarPubMed
Clapham, M. E., Bottjer, D. J., Powers, C. M., Bonuso, N., Fraiser, M. L., Marenco, P. J., Dornbos, S. Q., and Pruss, S. B.. 2006. Assessing the ecological dominance of Phanerozoic marine invertebrates. Palaios 21:431441.CrossRefGoogle Scholar
Colwell, R. K. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application published at: http://purl.oclc.org/estimates.Google Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. Jr. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic mass extinctions. Geology 28:675678.2.0.CO;2>CrossRefGoogle Scholar
Filipiak, P., and Zbukova, D. V.. 2006. Palynostratigraphy of the Frasnian–Famennian boundary deposits from the Central Devonian Field, western Russia and comparisons with adjacent areas. Review of Palaeobotany and Palynology 138:109120.CrossRefGoogle Scholar
Flessa, K. W., and Kowalewski, M.. 1994. Shell survival and time-averaging in nearshore environments: estimates from the radiocarbon literature. Lethaia 27:153165.CrossRefGoogle Scholar
Foote, M. 2016. On the measurement of occupancy in ecology and paleontology. Paleobiology 42:707729.CrossRefGoogle Scholar
Forcino, F. L. 2012. Multivariate assessment of the required sample size for community paleoecological research. Palaeogeography, Palaeoclimatology, Palaeoecology 315–316:134141.CrossRefGoogle Scholar
Forcino, F. L., Richards, E. J., Leighton, L. R., Chojnacki, N., and Stafford, E. S.. 2012. The sensitivity of paleocommunity sampling strategy at different spatiotemporal scales. Palaeogeography, Palaeoclimatology, Palaeoecology 313–314:246253.CrossRefGoogle Scholar
Forcino, F. L., Leighton, L. R., Twerdy, P., and Cahill, J. F.. 2015. Reexamining sample size requirements for multivariate, abundance-based community research: when resources are limited, the research does not have to be. PLoS ONE 10:e0128379. doi: 10.1371/journal.pone.0128379.CrossRefGoogle Scholar
Fraiser, M. L. 2011. Paleoecology of secondary tierers from western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 308:181189.CrossRefGoogle Scholar
Głuchowski, E. 2005. Epibionts on upper Eifelian crinoid columnals from the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica 50:315328.Google Scholar
Grabowska, M., Grzelak, K., and Kukliński, P.. 2015. Rock encrusting assemblages: structure and distribution along the Baltic Sea. Journal of Sea Research 103:2431.CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B.. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.Google Scholar
He, L., Wang, Y., Woods, A., Li, G., Yang, H., and Liao, W.. 2012. Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China. Palaios 27:878886.CrossRefGoogle Scholar
Hoffman, A., and Reif, W. E.. 1990. On the study of evolution in species-level lineages in the fossil record: controlled methodological sloppiness. Palaontologische Zeitschrift 64:514.CrossRefGoogle Scholar
Huntley, J. W., and Kowalewski, M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.CrossRefGoogle ScholarPubMed
Jackson, J. C. B., and Buss, L.. 1975. Allelopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences USA 12:51605163.CrossRefGoogle Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A.. 1985. Devonian eustatic fluctuations in Euroamerica. Geological Society of America Bulletin 96:567587.2.0.CO;2>CrossRefGoogle Scholar
Kidwell, S. M., Rothfus, T. A., and Best, M. M. R.. 2001. Sensitivity of taphonomic signatures to sample size, sieve size, damage scoring system, and target taxa. Palaios 16:2652.2.0.CO;2>CrossRefGoogle Scholar
Kowalewski, M. 1990. A hermeneutic analysis of the shell-drilling gastropod predation on mollusks in the Korytnica Clays (Middle Miocene; Holy Cross Mountains; Central Poland). Acta Geologica Polonica 40:183213.Google Scholar
Kowalewski, M., and Novack-Gottshall, P.. 2010. Resampling methods in paleontology. In J. Alroy, and G. Hunt, eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:1954. Yale Printing Services, New Haven, Conn.Google Scholar
Kowalewski, M., Hoffmeister, A. P., Baumiller, T. K., and Bambach, R. K.. 2005. Secondary evolutionary escalation between brachiopods and enemies of other prey. Science 308:17741777.CrossRefGoogle ScholarPubMed
Kuklinski, P., and Barnes, D. K. A.. 2008. Structure of intertidal and subtidal assemblages in Arctic vs temperate boulder shores. Polish Polar Research 29:203218.Google Scholar
Leighton, L. R. 2003. Predation on brachiopods. Pp. 215237 in P. H. Kelley, M. Kowalewski, and T. A. Hansen, eds. Predator–prey interaction in the fossil record. Plenum Press, New York.CrossRefGoogle Scholar
Lescinsky, H. L. 1995. The life orientation of concavo-convex brachiopods: overturning the paradigm. Paleobiology 21:520551.CrossRefGoogle Scholar
Lescinsky, H. L. 1997. Epibiont communities: recruitment and competition on North American Carboniferous brachiopods. Journal of Paleontology 71:3453.CrossRefGoogle Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.CrossRefGoogle Scholar
Liao, W. 2002. Biotic recovery from the Late Devonian F–F mass extinction event in China. Science in China (Series D) 45:380384.Google Scholar
Ma, X., Gong, Y., Chen, D., Racki, G., Chen, X., and Liao, W.. 2016. The Late Devonian Frasnian–Famennian Event in South China—patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology 448:224244.CrossRefGoogle Scholar
Manojlovic, M., and Clapham, M. E.. 2014. Examining the role of substrate preference in brachiopod decline following Jurassic recovery using the Paleobiology Database. Geological Society of America Abstracts with Program 46:2.Google Scholar
McGhee, G. R., Clapham, M. E., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370:260270.CrossRefGoogle Scholar
McKinney, F. K. 1995. Taphonomic effects and preserved overgrowth relationships among encrusting marine organisms. Palaios 10:279282.CrossRefGoogle Scholar
Oliver, W. A. Jr., and Pedder, A. E. H.. 1994. Crises in the Devonian history of the rugose corals. Paleobiology 20:178190.CrossRefGoogle Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.2.0.CO;2>CrossRefGoogle Scholar
Ovnatanova, N. S., and Kononova, L. I.. 2001. Conodonts and Upper Devonian (Frasnian) biostratigraphy of Central Regions of Russian Platform. Courier Forschungsinstitut Senckenberg 233:1115.Google Scholar
Pawlik, J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review 30:273335.Google Scholar
Pineda, J., Riebensahm, D., and Medeiros-Bergen, D.. 2002. Semibalanus balanoides in winter and spring: larval concentration, settlement, and substrate occupancy. Marine Biology 140:789800.Google Scholar
Poty, E. 1999. Famennian and Tournaisian recoveries of shallow water Rugosa after the late Frasnian and the late Strunian major crisis, in southern Belgium and surrounding areas, Hunan (South China) and the Omolon region (NE Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 154:1126.CrossRefGoogle Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
Racki, G. 2005. Toward understanding Late Devonian global events: few answers, many questions. Pp. 536. in D. J. Over, J. R. Morrow, and P. B. Wignall, eds. Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Elsevier, Amsterdam.Google Scholar
Rakociński, M. 2011. Sclerobionts on upper Famennian cephalopods from the Holy Cross Mountains, Poland. Palaeobiodiversity and Palaeoenvironments 91:6373.CrossRefGoogle Scholar
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C. R., Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A., and Vecchione, M.. 2010. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:28512899.CrossRefGoogle Scholar
Rodionova, G. D., Umnova, V. T., Ovnatanova, M. A., Rzhonsnitskaya, M. A., and Fedorova, T. I.. 1995. Devon Voronežskoj anteclizy I Moskovskoj sineklizy. Nedra, Moscow.Google Scholar
Rodland, D. L., Kowalewski, M., Simões, M. G, and Carroll, M.. 2004. Colonization of a “lost world”: encrustation patterns in modern subtropical brachiopod assemblages. Palaios 19:381395.2.0.CO;2>CrossRefGoogle Scholar
Rodland, D. L., Kowalewski, M., Carroll, M., and Simões, M. G. 2006. The temporal resolution of epibiont assemblages: are they ecological snapshots or overexposures? Journal of Geology 114:313324.CrossRefGoogle Scholar
Rodland, D. L., Simões, M. G., Krause, R. A. Jr., and Kowalewski, M.. 2014. Stowing away on ships that pass in the night: sclerobiont assemblages on individually dated bivalve and brachiopod shells from a subtropical shelf. Palaios 29:170183.CrossRefGoogle Scholar
Schneider, C. L. 2013. Epibiosis across the Late Devonian biotic crisis: a review. Proceedings of the Geologists’ Association 124:893909.CrossRefGoogle Scholar
Scrutton, C. T. 1988. Patterns of extinction and survival in Palaeozoic corals. Pp. 6588. in G. P. Larwood, ed. Extinction and survival in the fossil record. Systematics Association Special Volume 34. Oxford University Press, London.Google Scholar
Smith, S. A., Thayer, C. W., and Brett, C. E.. 1985. Predation in the Paleozoic: gastropod-like drillholes in Devonian brachiopods. Science 230:10331035.CrossRefGoogle ScholarPubMed
Sogot, C. E., Harper, E. M., and Taylor, P. D.. 2013. Biogeographical and ecological patterns in bryozoans across the Cretaceous–Paleogene boundary: implications for the phytoplankton collapse hypothesis. Geology 41:631634.CrossRefGoogle Scholar
Sogot, C. E., Harper, E. M., and Taylor, P. D.. 2014. The Lilliput effect in colonial organisms: cheilostome bryozoans at the Cretaceous–Paleogene mass extinction. PLoS ONE 9:e87048.CrossRefGoogle ScholarPubMed
Sokiran, E. V. 2002. Frasnian–Famennian extinction and recovery of rhynchonellid brachiopods from the East European Platform. Acta Palaeontologica Polonica 47:339354.Google Scholar
Sokiran, E. V. 2006. Early-Middle Frasnian cyrtospiriferid brachiopods from the East European Platform. Acta Palaeontologica Polonica 51:759772.Google Scholar
Taylor, P. D., and Wilson, M. A.. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62:1103.CrossRefGoogle Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P.. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.CrossRefGoogle ScholarPubMed
Tomašových, A., Kidwell, S. M., Foygel Barber, R., and Kaufman, D. S.. 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.CrossRefGoogle Scholar
Wahl, M., Link, H., Alexandridis, N., Thomason, J. C., Cifuentes, M., Costello, M. J., da Gama, B. A. P., Hillock, K., Hobday, A. J., Kaufmann, M. J., Keller, S., Kraufvelin, P., Krüger, I., Lauterbach, L., Antunes, B. L., Molis, M., Nakaoka, M., Nyström, J., bin Radzi, Z., Stockhausen, B., Thiel, M., Vance, T., Weseloh, A., Whittle, M., Wiesmann, L., Wunderer, L., Yamakita, T., and Lenz, M.. 2011. Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness. PLoS ONE 6:e19514.CrossRefGoogle Scholar
Węsławski, J. M., Wlodarska-Kowalczuk, M., Kedra, M., Legezynska, J., and Kotwicki, L.. 2012. Eight species that rule today’s European Arctic fjord benthos. Polish Polar Research 33:225238.CrossRefGoogle Scholar
Williams, P. H., and Gaston, K. J.. 1994. Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation 67:211217.CrossRefGoogle Scholar
Wilson, M. A., and Taylor, P. D.. 2006. Predatory drillholes and partial mortality in Devonian colonial metazoans. Geology 34:565568.CrossRefGoogle Scholar
Winfree, R., Fox, J., Williams, N., Reilly, J., and Cariveau, D.. 2015. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters 18:626635.CrossRefGoogle Scholar
Wisshak, M., Kroh, A., Bertling, M., Knaust, D., Nielsen, J. K., Jagt, J. W. M., Neumann, C., and Nielsen, K. S. S.. 2015. In defence of an iconic ichnogenus—Oichnus Bromley, 1981. Annales Societatis Geologorum Poloniae 85:445451.Google Scholar
Włodarska-Kowalczuk, M., and Kędra, M.. 2007. Surrogacy in natural patterns of benthic distribution and diversity: lower taxonomic resolution versus indicator groups. Marine Ecology Progress Series 352:5363.CrossRefGoogle Scholar
Yang, H., Chen, Z.-Q., Wang, Y., Ou, W., Liao, W., and Mei, X.. 2015. Palaeoecology of microconchids from microbialites near the Permian–Triassic boundary in South China. Lethaia 48:497508.CrossRefGoogle Scholar
Zapalski, M. K. 2005. Palaeoecology of Auloporida: an example from the Devonian of the Holy Cross Mts., Poland. Geobios 38:677683.CrossRefGoogle Scholar
Zatoń, M., and Borszcz, T., T. 2013. Encrustation patterns on post-extinction early Famennian (Late Devonian) brachiopods from Russia. Historical Biology 25:112.CrossRefGoogle Scholar
Zatoń, M., and Krawczyński, W.. 2011. Microconchid tubeworms across the upper Frasnian–lower Famennian interval in the Central Devonian Field, Russia. Palaeontology 54:14551473.CrossRefGoogle Scholar
Zatoń, M., Zhuravlev, A. V., Rakociński, M., Filipiak, P., Borszcz, T., Krawczyński, W., Wilson, M. A., and Sokiran, E. V.. 2014. Microconchid-dominated cobbles from the Upper Devonian of Russia: opportunism and dominance in a restricted environment following the Frasnian–Famennian biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 401:142153.CrossRefGoogle Scholar
Zatoń, M., Borszcz, T., Berkowski, B., Rakociński, M., Zapalski, M. K., and Zhuravlev, A. V.. 2015. Paleoecology and sedimentary environment of the Late Devonian coral biostrome from the Central Devonian Field, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 424:6175.CrossRefGoogle Scholar
Zatoń, M., Niedźwiedzki, G., Blom, H., and Kear, B.. 2016. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction. Scientific Reports 6:36345.CrossRefGoogle ScholarPubMed