Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T17:43:22.023Z Has data issue: false hasContentIssue false

Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks

Published online by Cambridge University Press:  08 April 2016

Kevin J. Peterson*
Affiliation:
Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755. E-mail: [email protected]
Mark A. McPeek
Affiliation:
Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755. E-mail: [email protected]
David A. D. Evans
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109
*
Corresponding author

Abstract

One of the enduring puzzles to Stephen Jay Gould about life on Earth was the cause or causes of the fantastic diversity of animals that exploded in the fossil record starting around 530 Ma–the Cambrian explosion. In this contribution, we first review recent phylogenetic and molecular clock studies that estimate dates for high-level metazoan diversifications, in particular the origin of the major lineages of the bilaterally-symmetrical animals (Bilateria) including cnidarians. We next review possible “internal” triggers for the Cambrian explosion, and argue that pattern formation, those processes that delay the specification of cells and thereby allow for growth, was one major innovation that allowed for the evolution of distinct macroscopic body plans by the end of the Precambrian. Of potential “external” triggers there is no lack of candidates, including snowball earth episodes and a general increase in the oxygenation state of the world's oceans; the former could affect animal evolution by a mass extinction followed by ecological recovery, whereas the latter could affect the evolution of benthic animals through the transfer of reduced carbon from the pelagos to the benthos via fecal pellets. We argue that the most likely cause of the Cambrian explosion was the evolution of macrophagy, which resulted in the evolution of larger body sizes and eventually skeletons in response to increased benthic predation pressures. Benthic predation pressures also resulted in the evolution of mesozooplankton, which irrevocably linked the pelagos with the benthos, effectively establishing the Phanerozoic ocean. Hence, we suggest that the Cambrian explosion was the inevitable outcome of the evolution of macrophagy near the end of the Marinoan glacial interval.

Type
Generating Disparity
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abate-Shen, C. 2002. Deregulated homeobox gene expression in cancer: cause or consequence? Nature Reviews Cancer 2:777785.Google Scholar
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., and Lake, J. A. 1997. Evidence for a clade of nematodes, arthropods and other molting animals. Nature 387:489493.CrossRefGoogle Scholar
Aleinikoff, J. N., Zartman, R. E., Walter, M., Rankin, D. W., Lyttle, P. T., and Burton, W. C. 1995. U-Pb ages of metarhyolites of the Catoctin and Mount Rogers formations, Central and Southern Appalachians: evidence for two pulses of Iapetan rifting. American Journal of Science 295:428454.Google Scholar
Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the precambrian-Cambrian boundary in Oman. Geology 31:431434.2.0.CO;2>CrossRefGoogle Scholar
Aris-Brosou, S., and Yang, Z. 2002. Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Systematic Biology 51:703714.CrossRefGoogle Scholar
Aris-Brosou, S., and Yang, Z. 2003. Bayesian models of episodic evolution support a late precambrian explosive diversification of the Metazoa. Molecular Biology and Evolution 20:19471954.Google Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences USA 95:606611.Google Scholar
Baguñà, J., Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., and Riutort, M. 2001. The first bilaterian organisms: simple or complex? New molecular evidence. International Journal of Developmental Biology 45:S133S134.Google Scholar
Benton, M. J., and Ayala, F. J. 2003. Dating the tree of life. Science 300:16981700.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland). In Landing, E., Narbonne, G. M., and Myrow, P. M., eds. Trace fossils, small shelly fossils and the Precambrian/Cambrian boundary. Bulletin of the New York State Museum 463:89.Google Scholar
Bishop, C. D., and Brandhorst, B. P. 2003. On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles. Evolution and Development 5:542550.CrossRefGoogle ScholarPubMed
Blair, J. E., Ikeo, K., Gojobori, T., and Hedges, S. B. 2002. The evolutionary position of nematodes. BMC Evolutionary Biology 2:17.CrossRefGoogle ScholarPubMed
Boaden, P. J. S. 1989. Meiofauna and the origins of the Metazoa. Zoological Journal of the Linnean Society 96:217227.Google Scholar
Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet, J., and Parco, Y. Le 2001. Sponge paraphyly and the origin of Metazoa. Journal of Evolutionary Biology 14:171179.CrossRefGoogle ScholarPubMed
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8(9):18.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science 261:12931298.Google Scholar
Bowring, S., Myrow, P., Landing, E., Ramezani, J., and Grotzinger, J. 2003. Geochronological constraints on terminal Neoproterzoic events and the rise of metazoans. Geophysical Research Abstracts 5:13219.Google Scholar
Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P., and Shields, G. 2000. New U-Pb zircon dates for the Neoproterozoic Ghubrrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28:175178.Google Scholar
Bridge, D., Cunningham, C. W., DeSalle, R., and Buss, L. W. 1995. Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Molecular Biology and Evolution 12:679689.Google ScholarPubMed
Bromham, L., Rambaut, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences USA 95:1238612389.Google Scholar
Brusca, R. C., and Brusca, G. J. 2002. Invertebrates, 2d ed. Sinauer, Sunderland, Mass.Google Scholar
Buckland-Nicks, J., and Scheltema, A. H. 1995. Was internal fertilization an innovation of early Bilateria? Evidence from sperm structure of a mollusc. Proceedings of the Royal Society of London B 261:1118.Google Scholar
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society 75:253295.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature 369:477479.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology 23:247262.Google Scholar
Butterfield, N. J. 2001. Ecology and evolution of Cambrian plankton. Pp. 200216in Zhuravlev, A. Y. and Riding, R., eds. The ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology 43:166177.Google Scholar
Butterfield, N. J. 2004. A vaucheriacean alga from the middle Proterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30:231252.Google Scholar
Calver, C. R., Black, L. P., Everard, J. L., and Seymour, D. B. 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology 32:893896.CrossRefGoogle Scholar
Canfield, D. E., and Teske, A. P. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127132.CrossRefGoogle ScholarPubMed
Carè, A., Silvani, A., Meccia, E., Mattia, G., Stoppacciaro, A., Parmiani, G., Peschle, C., and Colombo, M. P. 1996. HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Molecular and Cellular Biology 16:48424851.Google Scholar
Cavalier-Smith, T., Allsopp, M. T. E. P., Chao, E. E., Boury-Esnault, N., and Vacelet, J. 1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Canadian Journal of Zoology 74:20312045.Google Scholar
Chaffee, C., and Lindberg, D. R. 1986. Larval biology of Early Cambrian molluscs: the implications of small body size. Bulletin of Marine Science 39:536549.Google Scholar
Chen, J., and Zhou, G.-Q. 1997. Biology of the Chenjiang fauna. Pp. 11105in Chen, J., Cheng, Y. N., and Iten, H. V., eds. The Cambrian Explosion and the fossil record (Bulletin of the National Museum of Natural Science, Vol. 10). National Museum of Natural Science, Taichung.Google Scholar
Clapham, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology 30:627630.Google Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527544.Google Scholar
Collins, A. G. 2002. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15:418432.CrossRefGoogle Scholar
Collins, A. G., and Valentine, J. W. 2001. Defining phyla: evolutionary pathways to metazoan body plans. Evolution and Development 3:432442.Google Scholar
Colpron, M., Logan, J. M., and Mortensen, J. K. 2002. U-Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Canadian Journal of Earth Sciences 39:133143.Google Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydlowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the late Precambrian of East Poland. Journal of the Geological Society of London 152:599611.Google Scholar
Comptson, W., Wright, A. E., and Toghill, P. 2002. Dating the late precambrian volcanicity of England and Wales. Journal of the Geological Society, London 159:323339.Google Scholar
Condon, D. J., Prave, A. R., and Benn, D. I. 2002. Neoproterozoic glacial-rainout intervals: observations and implications. Geology 30:3538.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science (in press).Google Scholar
Conlon, I., and Raff, M. 1999. Size control in animal development. Cell 96:235244.Google Scholar
Morris, S. Conway 1979. The Burgess Shale (Middle Cambrian) Fauna. Annual Review of Ecology and Systematics 10:327349.CrossRefGoogle Scholar
Morris, S. Conway 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29:423467.Google Scholar
Morris, S. Conway 1998. Eggs and embryos from the Cambrian. Bioessays 20:676682.Google Scholar
Morris, S. Conway, and Collins, D. H. 1996. Middle Cambrian ctenophores from the Stephen Formation, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B 351:279308.Google Scholar
Copley, R. R., Aloy, P., Russell, R. B., and Telford, M. J. 2004. Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evolution and Development 6:164169.Google Scholar
Coulier, F., Popovici, C., Villet, R., and Birnbaum, D. 2000. MetaHox gene clusters. Journal of Experimental Biology 288:345351.Google Scholar
Coutinho, C. C., Fonseca, R. N., Mansure, J. J. C., and Borojevic, R. 2003. Early steps in the evolution of multicellularity: deep structural and functional homologies among homeobox genes in sponges and higher metazoans. Mechanisms of Development 120:429440.Google Scholar
Davidson, E. H. 2001. Genomic regulatory systems: development and evolution. Academic Press, San Diego.Google Scholar
Davidson, E. H., Peterson, K. J., and Cameron, R. A. 1995. Origin of adult bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270:13191325.Google Scholar
Dempster, T. J., Rogers, G., Tanner, P. W. G., Bluck, B. J., Muir, R. J., Redwood, S. D., Ireland, T. R., and Paterson, B. A. 2002. Timing of deposition, orogenesis and glaciation within the Dalradian rocks of Scotland: constraints from U-Pb zircon ages. Journal of the Geological Society, London 159:8394.Google Scholar
de Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., and Balavoine, G. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772776.Google Scholar
Duboule, D. 1995. Vertebrate Hox genes and proliferation—an alternative pathway to homeosis. Current Opinion in Genetics and Development 5:525528.Google Scholar
Eernisse, D. J., and Peterson, K. J. 2004. The history of animals. Pp. 197208in Cracraft, J. and Donoghue, M. J., eds. Assembling the tree of life. Oxford University Press, Oxford.Google Scholar
Erwin, D. H., and Davidson, E. H. 2002. The last common bilaterian ancestor. Development 129:30213032.CrossRefGoogle ScholarPubMed
Evans, D. A. D. 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. American Journal of Science 300:347433.Google Scholar
Evans, D. A. D. 2003. True polar wander and supercontinents. Tectonophysics 362:303320.Google Scholar
Fedonkin, M. A. 2003. The origin of the Metazoa in light of the Proterozoic fossil record. Paleontological Research 7:941.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:868871.Google Scholar
Finnerty, J. R., Pang, K., Burton, P., Paulson, D., and Martindale, M. Q. 2004. Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304:13351337.CrossRefGoogle Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’ decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1997. The Cambrian evolutionary ‘explosion’ recalibrated. Bioessays 19:429434.Google Scholar
Gaines, R. R. 2003. Understanding Burgess-Shale-type preservation: new insights from the Wheeler Shale, Utah. Geological Society of America Abstracts with Programs 35: 40:7.Google Scholar
Giribet, G., Distel, D. L., Polz, M., Sterrer, W., and Wheeler, W. C. 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S RNDA sequences and morphology. Systematic Biology 49:539562.CrossRefGoogle Scholar
Goodman, J. C., and Pierrehumbert, R. T. 2004. Glacial flow of floating marine ice in ‘Snowball Earth.’ Journal of Geophysical Research (in press).Google Scholar
Gould, S. J. 1979. Ever since Darwin. Norton, New York.Google Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Gould, S. J. 1998. On embryos and ancestors. Natural History 107(6):2022, 58–65.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Belknap Press of, Harvard University Press, Cambridge.Google Scholar
Grey, K., Walter, M. R., and Calver, C. R. 2003. Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact. Geology 31:459462.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.Google Scholar
Guensburg, T. E., and Sprinkle, J. 2001. Earliest crinoids: new evidence for the origin of the dominant Paleozoic echinoderms. Geology 29:131134.2.0.CO;2>CrossRefGoogle Scholar
Haase, A., Stern, M., Wächtler, K., and Bicker, G. 2001. A tissue-specific marker of Ecdysozoa. Development, Genes and Evolution 211:428433.CrossRefGoogle ScholarPubMed
Hadfield, M. G. 2000. Why and how marine-invertebrate larvae metamorphose so fast. Seminars in Cell and Developmental Biology 11:437443.Google Scholar
Hadfield, M. G., Carpizo-Ituarte, E. J., Del Carmen, K., and Nedv, B. T. ed. 2001. Metamorphic competence, a major adaptive convergence in marine invertebrate larvae. American Zoologist 41:11231131.Google Scholar
Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M. A., Liva, S. M., Hillis, D. M., and Lake, J. A. 1995. Evidence from 18S Ribosomal DNA that the lophophorates are protostome animals. Science 267:16411643.Google Scholar
Halverson, G. P., Maloof, A. C., and Hoffman, P. F. 2004. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Research 16:297324.Google Scholar
Hayward, D. C., Samuel, G., Pontynen, P. C., Catmull, J., Saint, R., Miller, D. J., and Ball, E. E. 2002. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proceedings of the National Academy of Sciences USA 99:81068111.Google Scholar
Hoffman, P. F., and Schrag, D. P. 2000. Snowball earth. Scientific American 282:6875.CrossRefGoogle Scholar
Hoffman, P. F., and Schrag, D. P. 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129155.CrossRefGoogle Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. 1998. A Neoproterozoic snowball earth. Science 281:13421346.Google Scholar
Hoffmann, K. H., Condon, D. J., Bowring, S. A., and Crowley, J. L. 2004. U-Pb zircon date from the Neoproterozoic Ghaub formation, Namibia: constraints on Marinoan glaciation. Geology 32:817820.Google Scholar
Holland, P. W. H. 2001. Beyond the Hox: how widespread is homeobox gene clustering? Journal of Anatomy 199:1323.Google Scholar
Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, R. 2000. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405:425429.Google Scholar
Ireland, T. R., Flöttman, T., Fanning, C. M., Gibson, G. M., and Preiss, W. V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogeny. Geology 26:243246.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology 43:219228.CrossRefGoogle ScholarPubMed
Johnson, K. B., and Shanks, A. L. 2003. Low rates of predation on planktonic marine invertebrate larvae. Marine Ecology Progress Series 248:125139.Google Scholar
Johnston, L. A., and Gallant, P. 2002. Control of growth and organ size in Drosophila. Bioessays 24:5464.CrossRefGoogle ScholarPubMed
Jondelius, U., Ruiz-Trillo, I., Baguñà, J., Riutort, d M. 2002. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta 31:201215.Google Scholar
Kaufman, A. J., and Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73:2749.Google Scholar
Kaufman, A. J., Knoll, A. H., and Narbonne, G. M. 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences USA 94:66006605.Google Scholar
Kennedy, M. J., Runnegar, B., Prave, A. R., Hoffmann, K. H., and Arthur, M. A. 1998. Two or four Neoproterozoic glaciations? Geology 26:10591063.Google Scholar
Kirschvink, J. L. 1992. Late Proterozoic low-latitude global glaciation: the snowball Earth. Pp. 5152in Schopf, J. W. and Klein, C. C., eds. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Kirschvink, J. L., and Raub, T. D. 2003. A methane fuse for the Cambrian explosion: carbon cycles and true polar wander. Comptes Rendus de l'Académie des Sciences (Géosciences) 335:6578.CrossRefGoogle Scholar
Kirschvink, J. L., Ripperdan, R. L., and Evans, D. A. 1997. Evidence for a large-scale reorganization of early Cambrian continental masses by inertial interchange true polar wander. Science 277:541545.Google Scholar
Knoll, A. H. 2000. Learning to tell Neoproterozoic time. Precambrian Research 100:320.Google Scholar
Knoll, A. H. 2003. Life on a young planet. Princeton University Press, Princeton.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284:21292137.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2004. A new period for the geologic time scale. Science 305:621622.Google Scholar
Landing, E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology 22:179182.Google Scholar
Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., and Heldmaier, W. 1998. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Science 35:329338.Google Scholar
Landing, E., Bowring, S. A., Davidek, K. L., Rushton, A. W. A., Fortey, R. A., and Wibledon, A. P. 2000. Cambrian-Ordovician boundary age and duration of the lowest Ordovician Tremadoc series based on U-Pb zircon dates from Avalonian Wales. Geological Magazine 137:485494.Google Scholar
Leather, J., Allen, P. A., Brasier, M. D., and Cozzi, A. 2002. Neoproterozoic snowball Earth under scrutiny: evidence from the Fiq glaciation of Oman. Geology 30:891894.Google Scholar
Leibold, M. A. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134:922949.Google Scholar
Levinton, J. S. 2001. Genetics, paleontology, and macroevolution, 2d ed.Cambridge University Press, Cambridge.Google Scholar
Li, C.-W., Chen, J., and Hua, T.-E. 1998. Precambrian sponges with cellular structures. Science 279:879882.Google Scholar
Li, X., and Rosenfeld, M. G. 2004. Origins of licensing control. Nature 427:687688.Google Scholar
Lindberg, D. R., and Guralnick, R. P. 2003. Phyletic patterns of early development in gastropod molluscs. Evolution and Development 5:494507.Google Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:5356.Google Scholar
Luo, L., Yang, X., Takihara, Y., Knoetgen, H., and Kessel, M. 2004. The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 427:749753.Google Scholar
MacGinitie, G. E. 1934. The egg-laying activities in the sea hare Tethys californicus (Cooper). Biological Bulletin 67:300303.CrossRefGoogle Scholar
Macouin, M., Besse, J., Ader, M., Gilder, S., Yang, Z., Sun, Z., and Agrinier, P. 2004. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the “snowball Earth” hypothesis. Earth and Planetary Science Letters 224:387398.Google Scholar
Mallatt, J., and Winchell, C. J. 2002. Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Molecular Biology and Evolution 19:289301.Google Scholar
Mallatt, J. M., Garey, J. R., and Shultz, J. W. 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution 31:178191.Google Scholar
Manuel, M., Borchiellini, C., Alivon, E., Le Parco, Y., Vacelet, J., and Boury-Esnault, N. 2003. Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Systematic Biology 52:311333.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288:841845.Google Scholar
Martindale, M. Q., Finnerty, J. R., and Henry, J. Q. 2002. The Radiata and the evolutionary origins of the bilaterian body plan. Molecular Phylogenetics and Evolution 24:358365.Google Scholar
Martindale, M. Q., Pang, K., and Finnerty, J. R. 2004. Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (Phylum Cnidaria; class, Anthozoa). Development 131:24632474.Google Scholar
McHugh, D., and Rouse, G. W. 1998. Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends in Ecology and Evolution 13:182186.Google Scholar
Medina, M., Collins, A. G., Silberman, J. D., and Sogin, M. L. 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proceedings of the National Academy of Sciences USA 98:97079712.Google Scholar
Myrow, P. M., and Kaufman, A. J. 1999. A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland, Canada. Journal of Sedimentary Research 69:784793.Google Scholar
Naora, H., Yang, Y., Montz, F. J., Seidman, J. D., Kurman, R. J., and Roden, R. B. S. 2001. A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells. Proceedings of the National Academy of Sciences USA 98:40604065.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science 305:11411144.Google Scholar
Narbonne, G. M., and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology 31:2730.Google Scholar
Nei, M., Xu, P., and Glazko, G. 2001. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proceedings of the National Academy of Sciences USA 98:24972502.Google Scholar
Nielsen, C. 1998. Origin and evolution of animal life cycles. Biological Reviews of the Cambridge Philosophical Society 73:125155.Google Scholar
Nijhout, H. F. 2003. The control of body size in insects. Developmental Biology 261:19.Google Scholar
Nützel, A., and Fryda, J. 2003. Paleozoic plankton revolution: evidence from early gastropod ontogeny. Geology 31:829831.Google Scholar
Olive, P. J. W. 1985. Covariability of reproductive traits in marine invertebrates: implications for the phylogeny of the lower invertebrates. Pp. 4259in Morris, S. Conway, George, D., Gibson, R., and Platt, H. M., eds. The origins and relationships of lower invertebrates.Clarendon, Oxford.Google Scholar
Pasquinelli, A. E., McCoy, A., Jimenez, E., Saló, E., Ruvkun, G., Martindale, M. Q., and Baguñà, J. 2003. Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evolution and Development 5:372378.Google Scholar
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., Habura, A., and Bowser, S. S. 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences USA 100:1149411498.Google Scholar
Pechenik, J. A. 1979. Role of encapsulation in invertebrate life histories. American Naturalist 114:859870.Google Scholar
Pechenik, J. A. 1999. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series 177:269297.Google Scholar
Peterson, K. J., and Eernisse, D. J. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution and Development 3:170205.Google Scholar
Peterson, K. J., Cameron, R. A., and Davidson, E. H. 1997. Set-aside cells in maximal indirect development: evolutionary and developmental significance. Bioessays 19:623631.Google Scholar
Peterson, K. J., Cameron, R. A., and Davidson, E. H. 2000. Bilaterian origins: significance of new experimental observations. Developmental Biology 219:117.Google Scholar
Peterson, K. J., Waggoner, B., and Hagadorn, J. W. 2003. A fungal analog for Newfoundland Ediacaran fossils. Integrative and Comparative Biology 43:127136.CrossRefGoogle ScholarPubMed
Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., and McPeek, M. A. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences USA 101:65366541.Google Scholar
Pierrehumbert, R. T. 2004. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429:646649.Google Scholar
Pollard, S. L., and Holland, P. W. 2000. Evidence for 14 homeobox gene clusters in human genome ancestry. Current Biology 10:10591062.Google Scholar
Reynolds, C. S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, New York.Google Scholar
Ridgwell, A. J., Kennedy, M. J., and Caldeira, K. 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302:859862.Google Scholar
Rigby, S., and Milsom, C. 1996. Benthic origins of zooplankton: an environmentally determined macroevolutionary event. Geology 24:5254.Google Scholar
Rigby, S., and Milsom, C. 2000. Origins, evolution, and diversification of zooplankton. Annual Review of Ecology and Systematics 31:293313.Google Scholar
Rouse, G. W. 2000. The epitome of hand waving? Larval feeding and hypotheses of metazoan phylogeny. Evolution and Development 2:222233.Google Scholar
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., and Baguñà, J. 1999. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:19191923.Google Scholar
Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Baguñà, J., and Riutort, M. 2002. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences USA 99:1124611251.Google Scholar
Runnegar, B. 1982. The Cambrian explosion: animals or fossils? Journal of the Geological Society of Australia 29:395411.CrossRefGoogle Scholar
Schaefer, B. F., and Burgess, J. M. 2003. Re-Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: implications for the ‘Snowball Earth.’ Journal of the Geological Society, London 160:825828.Google Scholar
Schrag, D. P., and Hoffman, P. F. 2001. Life, geology and snowball earth. Nature 409:306.Google Scholar
Scholtz, C. B., and Technau, U. 2003. The ancestral role of Brachyury: expression of NemBral in the basal Cnidarian Nematostella Vectensis (Anthozoa). Development, Genes and Evolution 212:563570.Google Scholar
Shen, Y., Knoll, A. H., and Walter, M. R. 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423:632635.Google Scholar
Shields, G., Stille, P., Brasier, M. D., and Atudorei, N.-V. 1997. Stratified oceans and oxygenation of the late Precambrian environment: a post glacial geochemical record from the Neoproterozoic of W. Mongolia. Terra Nova 9:218222.Google Scholar
Signor, P. W., and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.Google Scholar
Sly, B. J., Snoke, M. S., and Raff, R. A. 2003. Who came first—larvae or adults? Origins of bilaterian metazoan larvae. International Journal of Developmental Biology 47:623632.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, A. B., and Peterson, K. J. 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences 30:6588.Google Scholar
Sohl, L. E., Christie-Blick, N., and Kent, D. V. 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciation in Neoproterozoic time. Geological Society of America Bulletin 111:11201139.Google Scholar
Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A. 1984. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106:433471.Google Scholar
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the late precambrian. Proceedings of the National Academy of Sciences USA 70:14861489.Google Scholar
Stanley, S. M. 1976a. Fossil data and the precambrian-Cambrian evolutionary transition. American Journal of Science 276:5676.Google Scholar
Stanley, S. M. 1976b. Ideas on the timing of metazoan diversification. Paleobiology 2:209219.Google Scholar
Steele, R. E., Lieu, P., Mai, N. H., Shenk, M. A., and Sarras, M. P. J. 1996. Response to insulin and the expression pattern of a gene encoding an insulin receptor homologue suggest a role for an insulin-like molecule in regulating growth and patterning in Hydra. Development, Genes and Evolution 206:247259.Google Scholar
Steiner, M., and Reitner, J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology 29:11191122.Google Scholar
Strathmann, R. R. 1987. Larval feeding. Pp. 465550in Giese, A. C., Pearse, J. S., and Pearse, V. B., eds. Reproduction of marine invertebrates, Vol. IX. Blackwell Scientific, Palo Alto; Boxwood Press, Pacific Grove, Calif.Google Scholar
Strathmann, R. R. 1993. Hypothesis on the origins of marine larvae. Annual Review of Ecology and Systematics 24:89117.Google Scholar
Swofford, D. L. 2002. PAUP Phylogenetic Analysis Using Parsimony ( and Other Methods) v. 4.0b10 for Macintosh. Sinauer, Sunderland, Mass.Google Scholar
Telford, M. J., Lockyer, A. E., Cartwright-Finch, C., and Littlewood, D. T. J. 2003. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London B 270:10771083.Google Scholar
Thompson, M. D., and Bowring, S. A. 2000. Age of the Squantum “Tillite” Boston Basin, Massachusetts: U-PB zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science 300:630655.Google Scholar
Tolmacheva, T. J., Danelian, T., and Popov, L. E. 2001. Evidence for 15 m.y. of continuous deep-as biogenic siliceous sedimentation in early Paleozoic oceans. Geology 29:755758.Google Scholar
Trumpp, A., Rafaeli, Y., Oskarsson, T., Gasser, S., Murphy, M., Martin, G. R., and Bishop, J. M. 2001. c-Myc regulates mammalian body size by controlling cell number not cell size. Nature 414:768773.Google Scholar
Turner, J. T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology 27:57102.Google Scholar
Vacelet, J., and Boury-Esnault, N. 1995. Carnivorous sponges. Nature 373:333335.Google Scholar
Valentine, J. W., and Collins, A. G. 2000. The significance of moulting in ecdysozoan evolution. Evolution and Development 2:152156.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.Google Scholar
Vannier, J., and Chen, J.-Y. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia 33:295311.Google Scholar
Walker, J. C. G., Hays, P. B., and Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface. Journal of Geophysical Research 86:97769782.Google Scholar
Wang, D. Y.-C., Kumar, S., and Hedges, S. B. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society of London B 266:163171.Google Scholar
Williams, G. C. 1966. Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton, N.J.Google Scholar
Williams, G. E., and Wallace, M. W. 2003. The Acraman asteroid impact, South Australia: magnitude and implications for the late Vendian environment. Journal of the Geological Society, London 160:545554.Google Scholar
Wolf, Y. I., Rogozin, I. B., and Koonin, E. V. 2004. Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Research 14:2936.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568573.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553558.Google Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, south China. Journal of Paleontology 76:347376.Google Scholar
Xiao, S., Bao, H., Wang, H., Kaufman, A. J., Zhou, C., Li, G., Yuan, X., and Ling, H. 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrian Research 130:126.Google Scholar
Young, C. M., and Chia, F.-S. 1987. Abundance and distribution of pelagic larvae as influenced by predation, behavior, and hydrographic factors. Pp. 385463in Giese, A. C., Pearse, J. S. and Pearse, V. B., eds. Reproduction of marine invertebrates, Vol. IX. Blackwell Scientific, Palo Alto; Boxwood Press, Pacific Grove, Calif.Google Scholar
Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., and Chen, Z. 2004. New constraints on the ages of the Neoproterozoic glaciations in south China. Geology 32:437440.Google Scholar
Zrzavy, J., Mihulka, S., Kepka, P., Bezdek, A., and Tietz, D. 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249285.Google Scholar