Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T19:16:05.136Z Has data issue: false hasContentIssue false

Sympatric speciation and phyletic change in Globorotalia truncatulinoides

Published online by Cambridge University Press:  08 February 2016

David Lazarus
Affiliation:
Geologisches Institut, Eidgenössische Technische Hochschule-Zentrum, CH-8092 Zürich, Switzerland
Heinz Hilbrecht
Affiliation:
Geologisches Institut, Eidgenössische Technische Hochschule-Zentrum, CH-8092 Zürich, Switzerland
Cinzia Spencer-Cervato
Affiliation:
Geologisches Institut, Eidgenössische Technische Hochschule-Zentrum, CH-8092 Zürich, Switzerland
Hans Thierstein
Affiliation:
Geologisches Institut, Eidgenössische Technische Hochschule-Zentrum, CH-8092 Zürich, Switzerland

Abstract

Speciation processes are only rarely studied with fossil materials, even though in principle hypotheses of speciation patterns are most directly testable in the fossil record. We quantitatively document in two widely separated South Pacific DSDP holes the mid-Pliocene speciation of the planktonic foraminifer Globorotalia truncatulinoides. Speciation, with continuous geographic co-occurrence of ancestor and descendant forms, occurred simultaneously at both localities over a period of ~500,000 years. This suggests a sympatric speciation process that involved a large, geographically extensive population. Globorotalia truncatulinoides underwent its most rapid and extensive evolutionary change between ~2.8 and 2.5 Ma. This time interval corresponds to the development of northern hemisphere glaciation, suggesting that climate-controlled paleoceanographic change may have played a significant role in the evolution of G. truncatulinoides.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology 9:390397.CrossRefGoogle Scholar
Backman, J., and Shackleton, N. J. 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannoplankton from the Atlantic, Indian and Pacific Oceans. Marine Micropaleontology 8:141170.CrossRefGoogle Scholar
Banner, F. T., and Blow, W. H. 1960. Some primary types of species belonging to the superfamily Globigerinacea. Cushman Foundation for Foraminiferal Research, Contributions 11:141.Google Scholar
Barron, J. A., Baldauf, J. G., Barrera, E., Caulet, J.-P., Huber, B. T., Keating, B. H., Lazarus, D., Sakai, H., Thierstein, H. R., and Wei, W. 1991. Biochronologic and magnetochronologic synthesis of Leg 119 sediments from the Kerguelen Plateau and Prydz Bay, Antarctica. Pp. 813848in Barron, J. A. and Larsen, B., eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 119. Ocean Drilling Program, College Station, Tex.Google Scholar
Barton, C. E., and Bloemendal, J. 1986. Paleomagnetism of sediments collected during Leg 90, Southwest Pacific. Pp. 12731316in Kennett, and von der Borch, 1986.Google Scholar
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic Foraminifera. Pp. 1100in Ramsay, A. T. S., ed. Oceanic micropaleontology, Vol. 1. Academic Press, London.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin 96:14071418.2.0.CO;2>CrossRefGoogle Scholar
Blow, W. H. 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. Pp. 199422in Proceedings First International Conference on Planktonic Microfossils, Vol. 1. Geneva.CrossRefGoogle Scholar
Bolli, H. M., and Saunders, J. B. 1985. Oligocene to Holocene low latitude planktonic foraminifera. Pp. 155262in Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge, London.Google Scholar
Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., and Wright, J. 1989. Ocean circulation. Pergamon, Oxford.Google Scholar
Bush, G. L. 1975. Modes of animal speciation. Annual Review of Ecology and Systematics 6:339364.CrossRefGoogle Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.CrossRefGoogle Scholar
Chen, P. H. 1975. Post-Paleocene Antarctic Radiolaria: their taxonomy, biostratigraphy, and phylogeny, and the development of late Neogene cold-water faunas. Ph.D. dissertation. Columbia University, N.Y.Google Scholar
Cifelli, R. 1976. Views and observations on the taxonomy of certain Neogene planktonic foraminiferal species. Pp. 3646in Takayanagi, Y. and Saito, T., eds. Progress in micropaleontology. Micropaleontology Press, American Museum of Natural History, New York.Google Scholar
Coyne, J. A. 1992. Genetics and speciation. Nature (London) 355:511515.CrossRefGoogle ScholarPubMed
Davis, J. C. 1973. Statistics and data analysis in geology. Wiley and Sons, New York.Google Scholar
Dowsett, H. J. 1988. Diachrony of late Neogene microfossils in the southwest Pacific Ocean: application of the Graphic Correlation method. Paleoceanography 3:209222.CrossRefGoogle Scholar
Elmstrom, K. M., and Kennett, J. P. 1986. Late Neogene paleoceanographic evolution of Site 590: southwest Pacific. Pp. 13611381in Kennett, and von der Borch, 1986.Google Scholar
Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton University Press, Princeton.Google ScholarPubMed
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7:179188.CrossRefGoogle Scholar
Futuyma, D. J. 1986. Evolutionary biology, 2d ed.Sinauer, Sunderland, Mass.Google ScholarPubMed
Gersonde, R., Abelmann, A., Burckle, L., Hamilton, N., Lazarus, D., McCartney, K., O'Brien, P., Spiess, V., and Wise, J. S. W. 1990. Biostratigraphic synthesis of Neogene siliceous microfossils from the Antarctic Ocean, ODP Leg 113 (Weddell Sea). Pp. 915936in Barker, P., Kennett, J. P., et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 113. Ocean Drilling Program, College Station, Tex.Google Scholar
Gradstein, F. M. 1974. Mediterranean Pliocene Globorotalia: a biometrical approach. Utrecht Micropaleontological Bulletins 7:1128.Google Scholar
Harwood, D., Lazarus, D. B., Aubry, M., Berggren, W. A., Heider, F., Inokuchi, H., and Maruyama, T. 1992. Neogene stratigraphic synthesis, ODP Leg 120. Pp. 10311052in Wise, W., Schlich, R., O'Connell, S., et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 120. Ocean Drilling Program, College Station, Tex.Google Scholar
Hays, J. D. 1970. Stratigraphy and evolutionary trends of radiolaria in North Pacific deep-sea sediments. Pp. 185218in Geological Society of America Memoirs, Vol. 126. Geological Society of America, Colo.Google Scholar
Healy-Williams, N. 1983. Fourier shape analysis of Globorotalia truncatulinoides from late Quaternary sediments in the southern Indian Ocean. Marine Micropaleontology 8:115.CrossRefGoogle Scholar
Healy-Williams, N., and Williams, D. F. 1981. Fourier analysis of test shape of planktonic Foraminifera. Nature (London) 289:485487.CrossRefGoogle Scholar
Healy-Williams, N., Ehrlich, R., and Williams, D. F. 1985. Morphometric and stable isotope evidence for sub-populations of Globorotalia truncatulinoides. Journal of Foraminiferal Research 15:242253.CrossRefGoogle Scholar
Hemleben, C., and Spindler, M. 1983. Recent advances in research on living planktonic Foraminifera. Utrecht Micropaleontological Bulletins 30:141170.Google Scholar
Hemleben, C., Spindler, M., Breitinger, I., and Ott, R. 1987. Morphological and physiological response of G. sacculifer under varying laboratory conditions. Marine Micropaleontology 12:305324.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Herb, R. 1968. Recent planktonic foraminifera from sediments of the Drake Passage, Southern Ocean. Eclogae Geologae Helvetica 61:476480.Google Scholar
Hills, S. J. 1987. The effects of allometry in Holocene populations of Globorotalia truncatulinoides. Terra Cognita 7:215.Google Scholar
Hills, S. J. 1988. Outline extraction of microfossils in reflected light images. Computers and Geosciences 14:481488.CrossRefGoogle Scholar
Hills, S. J., and Thierstein, H. R. 1989. Plio-Pleistocene calcareous plankton biochronology. Marine Micropaleontology 14:6796.CrossRefGoogle Scholar
Jenkins, D. G., and Gamson, P. 1993. The late Cenozoic Globorotalia truncatulinoides datum-plane in the Atlantic, Pacific and Indian Oceans. Pp. 127130in Hailwood, E. A. and Kidd, R. B., eds. High resolution stratigraphy. Special Publications, Vol. 70. The Geological Society, London.Google Scholar
Jenkins, D. G., and Srinivasan, M. S. 1986. Cenozoic planktonic foraminifers from the equator to the sub-antarctic of the Southwest Pacific. Pp. 795834in Kennett, J. P. & von der Borch, C. C. (Eds.) Initial Reports of the Deep Sea Drilling Project. Vol. 90. U. S. Government Printing Office, Washington, D.C.Google Scholar
Keller, G., and Barron, J. A. 1987. Paleodepth distribution of Neogene deep-sea hiatuses. Paleoceanography 2:697713.CrossRefGoogle Scholar
Kellogg, D. E., and Hays, J. D. 1975. Microevolutionary patterns in late Cenozoic radiolaria. Paleobiology 1:150160.CrossRefGoogle Scholar
Kennett, J. P. 1968. Globorotalia truncatulinoides as a paleoceanographic index. Science 159:14611463.CrossRefGoogle Scholar
Kennett, J. P. 1976. Phenotypic variation in some Recent and late Cenozoic planktonic foraminifera. Pp. 160in Hedley, R. H. and Adams, C. G., eds. Foraminifera, Vol. 2. Academic Press, London.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene planktonic foraminifera—a phylogenetic atlas. Hutchison Ross, Stroudsberg, Penn.Google Scholar
Kennett, J. P., and von der Borch, C. C., eds. 1986. Initial reports of the Deep Sea Drilling Project, Vol. 90. U.S. Government Printing Office, Washington, D.C.Google Scholar
Kummel, B., and Raup, D. 1965. Handbook of paleontological techniques. W. H. Freeman, San Francisco.Google Scholar
Lazarus, D. 1983. Speciation in pelagic protista and its study in the planktonic microfossil record: a review. Paleobiology 9:327340.CrossRefGoogle Scholar
Lazarus, D. B. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatium. Paleobiology 12:175189.CrossRefGoogle Scholar
Lazarus, D. B. 1990. Middle Miocene to Recent radiolarians from the Weddell Sea, Antarctica, ODP Leg 113. Pp. 709728in Barker, P. F. and Kennett, J. P., eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 113. Ocean Drilling Program, College Station, Tex.Google Scholar
Lazarus, D. B. 1992. Age depth plot and age maker: age depth modelling on the Macintosh series of computers. Geobyte 7:713.Google Scholar
Lazarus, D., Spencer-Cervato, C., Biolzi, M., Beckmann, J. P., von Salis Perch-Nielsen, K., Hilbrecht, H., and Thierstein, H.In press. Revised chronology of Neogene DSDP and ODP holes from the world ocean. Ocean Drilling Project Technical Note Series, College Station, Tex.Google Scholar
Lidz, B. 1972. Globorotalia crassaformis morphotype variations in Atlantic and Carribbean deep-sea cores. Micropaleontology 18:194211.CrossRefGoogle Scholar
Lohman, W. H. 1986. Calcareous nannoplankton biostratigraphy of the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean, Deep Sea Drilling Project Leg 90: Neogene and Quaternary. Pp. 763793in Kennett, and von der Borch, 1986.Google Scholar
Lohmann, G. P., and Malmgren, B. A. 1983. Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the Late Pleistocene: gradual evolution or ocean change? Paleobiology 9:414421.CrossRefGoogle Scholar
Lohmann, G. P., and Schweitzer, P. N. 1990. Globorotalia truncatulinoides' growth and chemistry as probes of the past thermocline: 1, shell size. Paleoceanography 5:5575.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Mayer, L., et al., eds. 1985. Initial reports of the Deep Sea Drilling Project, Vol. 85. U.S. Government Printing Office, Washington, D.C.Google Scholar
Mayer, L., et al., eds. 1992. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 138. Ocean Drilling Program, College Station, Tex.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge, Mass.CrossRefGoogle Scholar
Mayr, E. 1970. Populations, species, and evolution. Harvard University Press, Cambridge, Mass.Google Scholar
McGowan, J. A. 1974. The nature of oceanic ecosystems. Pp. 928in Miller, C. B., ed., The biology of the Oceanic Pacific—Proceedings of the 33rd Annual Biology Colloquium. Oregon State University, Corvallis.Google Scholar
McGowan, J. A. 1986. The biogeography of pelagic ecosystems. Pp. 191200in Pierrot-Bults, A. C., van der Spoel, S., Zahuranec, B. J., and Johnson, R. K., eds., Pelagic biogeography. UNESOC Technical Papers in Marine Science, Vol. 49. UNESCO, Paris.Google Scholar
Neff, N. A., and Marcus, L. F. 1980. A survey of multivariate methods for systematics: handbook for a workshop on numerical methods in systematic mammalogy. American Museum of Natural History, New York.Google Scholar
Olsson, R. K. 1973. What is kummerform planktonic foraminifer? Journal of Paleontology 47(2):327329.Google Scholar
Parker, F. L., and Berger, W. H. 1971. Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific. Deep-Sea Research 18:71107.Google Scholar
Petrushevskaya, M. G. 1986. Evolution of the Antarctissa group. Marine Micropaleontology 11:185195.CrossRefGoogle Scholar
Phillips, J. D., Berggren, W. A., Bertels, A., and Wall, D. 1968. Paleomagnetic stratigraphy and micropaleontology of three deep sea cores from the Central North Atlantic Ocean. Earth and Planetary Science Letters 4:118130.CrossRefGoogle Scholar
Prothero, D. R., and Lazarus, D. B. 1980. Planktonic microfossils and the recognition of ancestors. Systematic Zoology 29(2):119129.CrossRefGoogle Scholar
Ravello, A. C., and Fairbanks, R. G. 1992. Oxygen isotope composition of multiple species of planktonic foraminifera: recorders of modern photic zone temperature gradient. Paleoceanography 7(6):815832.CrossRefGoogle Scholar
Raymo, M. E., Ruddiman, W. F., Backman, J., Clement, B. M., and Martinson, D. G. 1989. Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography 4:413446.CrossRefGoogle Scholar
Rögl, F. 1974. The evolution of the Globorotalia truncatulinoides and Globorotalia crassaformis group in the Pliocene and Pleistocene of the Timor Trough, DSDP Leg 27, Site 262. Pp. 743768in Veevers, J. J. and Heirtzler, J. R., eds. Initial Reports of the Deep Sea Drilling Project, Vol. 27. United States Government Printing Office, Washington, D.C.Google Scholar
Scott, G. H. 1982. Tempo and stratigraphic record of speciation in Globorotalia punticulata. Journal of Foraminiferal Research 12:112.CrossRefGoogle Scholar
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighansen, R., Hudlestun, P., Keene, J. B., Kaltenbach, A. J., Krumsiek, K. A. O., Morton, A. C., Murray, J. W., and Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature (London) 307:620623.CrossRefGoogle Scholar
Spencer-Cervato, C., Beckmann, J. P., Casey Hillbrecht, M., Lazarus, H. D., von Salis Perch-Nielsen, K., Thierstein, H., and Biolzi, M. 1992. Revised Neogene plankton biochronology. P. 244in 29th International Geological Congress, Abstracts, Vol. 2. Kyoto, Japan.Google Scholar
Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H., and Jeffords, R. M. 1975. Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions 62:1425.Google Scholar
Takayanagi, Y., and Saito, T. 1962. Planktonic foraminifera from the Nobori Formation, Shikoku, Japan. Science Reports Tohoku Imperial University 2:67105.Google Scholar
Takayanagi, Y., Niitsuma, N., and Sakai, T. 1968. Wall micro-structure of Globorotalia truncatulinoides (d'Orbigny). Tohoku University Scientific Reports 40:141170.Google Scholar
Thierstein, H. R. 1981. Late Cretaceous nannoplankton and the change at the Cretaceous–Tertiary boundary. Pp. 355394in Warme, J. E., Douglas, R. G., and Winterer, E. L., eds. The Deep Sea Drilling Project: a decade of progress. Special Publications, Vol. 32. Society for Economic Paleontologists and Mineralogists, Tulsa, Okla.CrossRefGoogle Scholar
van der Spoel, S., and Pierrot-Bults, A. C., eds. 1979. Zoogeography and diversity of plankton. Halstead, New York.Google Scholar
Wei, K. Y. 1994. Allometric heterochrony in the Pliocene-Pleistocene planktic foraminiferal clade Globoconella. Paleobiology 20:6684.CrossRefGoogle Scholar
Wei, K. Y., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:345363.CrossRefGoogle Scholar