Published online by Cambridge University Press: 08 April 2016
Symbiotic relationships involving physical contact between worms and solitary rugosan polyps are recorded by the following structures in North American Late Ordovician corals: (1) Trypanites borings enclosed within septal swellings in two specimens, (2) vermiform grooves and openings along the external wall of one corallum, and (3) a chamber containing a unique brown tube within one individual. These features are indicative, respectively, of commensal boring polychaete annelids that penetrated through coralla, commensal epizoic worms of unknown taxonomic affinity that attached to the side of a polyp, and a tubicolous worm (possibly a polychaete) that was likely a parasitic endozoan. Symbionts comparable to the latter two types are also known from two specimens of Devonian solitary rugose corals.
Indirect evidence suggests that symbioses between solitary rugosans and the worms that produced Trypanites borings as dwelling structures in the sides of coralla were relatively common. However, direct evidence that the hosts were alive has been found in only two corals. In both cases, worms bored through septa within the calices and came into contact with basal surfaces of the polyps, which secreted skeletal material that sealed off the intruders. The rarity of such structures suggests that the encounters were inadvertent. If boring worms favored upcurrent portions of objects in order to maximize feeding benefits and avoid sedimentation, their locations indicate that the concave sides of curved coralla faced toward prevailing currents when in life positions.
“Opportunistic” worms are known to have attached to the sides of polyps only in rare instances when the hosts became temporarily exposed as a result of accidents or abnormalities. This indicates that coralla normally served to shield polyps from colonization by nonboring epizoans.
Worms that apparently extended up through openings in basal surfaces of polyps likely obtained sustenance parasitically within the central cavities. They could have entered the hosts through their mouths, or via the calices when parts of the polyps detached from their coralla and contracted radially. The rarity of this type of relationship in solitary Rugosa suggests that the worms entered inadvertently.
Symbioses involving physical contact between worms and polyps seem to have been rare throughout the history of solitary rugose corals. Both groups apparently tolerated such associations when they did occur, although the rugosans secreted structures in their coralla that served to isolate the symbionts. In doing so, they recorded the presence of worms not likely to be preserved as body fossils. The interpretation of such features provides information on the physiology and ethology of both organisms, on the history of symbiotic relationships, and on the diversity of soft-bodied organisms in ancient environments.