Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T17:16:58.807Z Has data issue: false hasContentIssue false

Substrate affinity and diversity dynamics of Paleozoic marine animals

Published online by Cambridge University Press:  08 April 2016

Michael Foote*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected]

Abstract

Short-term fluctuations in the diversification rate of Paleozoic marine animal genera are more strongly correlated with extinction-rate variation than with origination-rate variation. Diversity dynamics are strikingly different in the Mesozoic and Cenozoic, when variation in origination is more important than extinction. Data on the lithologic context of taxonomic occurrences in the Paleobiology Database are used to assess the substrate affinities of Paleozoic genera. The greater role of extinction-rate variation in the Paleozoic is found to characterize genera with an affinity for carbonate substrates but not those that prefer terrigenous clastic substrates. It is therefore plausible that the Paleozoic to post-Paleozoic shift in diversity dynamics is underlain in part by the secular decline in the relative areal extent of carbonate environments, and the concomitant decline in the relative diversity of carbonate-versus clastic-loving taxa.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:6568.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F.T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.CrossRefGoogle Scholar
Bretsky, P. W. 1968. Evolution of Paleozoic marine invertebrate communities. Science 159:12311233.Google Scholar
Cope, J. C. W., and Babin, C. 1999. Diversification of bivalves in the Ordovician. Geobios 32:175185.CrossRefGoogle Scholar
Efron, B., and Tibshirani, R. J. 1993. An introduction to the bootstrap. Chapman and Hall, New York.Google Scholar
Feller, W. 1968. An introduction to probability theory and its applications, Vol. I, 3d ed. revised. Wiley, New York.Google Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26:578605.Google Scholar
Foote, M. 2000b. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.2.0.CO;2>CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407410.2.3.CO;2>CrossRefGoogle Scholar
Hallock, P., and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389398.Google Scholar
James, N. P. 1984. Introduction to carbonate facies models. Pp. 209211in Walker, R. G., ed. Facies models, 2d ed.Geological Association of Canada Publications, Toronto.Google Scholar
James, N. P., and Clarke, J. A. D., eds. 1997. Cool-water carbonates (SEPM Special Publication 56). SEPM, Tulsa, Okla.CrossRefGoogle Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology 2:479482.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36:195226.Google Scholar
Lottes, A. L., and Rowley, D. B. 1990. Reconstruction of the Laurasian and Gondwanan segments of Permian Pangaea. In McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society Memoir 12:383395. The Geological Society, London.Google Scholar
Miller, A. I., 1988. Spatio-temporal transitions in Paleozoic Bivalvia: an analysis of North American fossil assemblages. Historical Biology 1:251273.Google Scholar
Miller, A. I., and Connolly, S. R. 2001. Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology 27:768778.Google Scholar
Miller, A. I., and Mao, S. 1995. Association of orogenic activity with the Ordovician radiation of marine life. Geology 23:305308.Google Scholar
Novack-Gottshall, P. M., and Miller, A. I. 2003. Comparative geographic and environmental diversity dynamics of gastropods and bivalves during the Ordovician Radiation. Paleobiology 29:576604.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.Google Scholar
Ronov, A. B. 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science 294:777801.CrossRefGoogle Scholar
Ronov, A. B., Khain, V. E., Balukhovsky, A. N., and Seslavinsky, K. B. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology 25:311325.Google Scholar
Scotese, C. R. 2005. The paleogeographic method. http://scotese.com/method1.htm.Google Scholar
Scotese, C. R., and McKerrow, W. S. 1990. Revised world maps and introduction. In McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society Memoir 12:121. The Geological Society, London.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A. M. 1979. Paleozoic base maps. Journal of Geology 87:217277.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sheehan, P. M. 1985. Reefs are not so different—they follow the evolutionary pattern of level-bottom communities. Geology 13:4649.2.0.CO;2>CrossRefGoogle Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed.W. H. Freeman, New York.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.Google Scholar
Waisfeld, B. G., Sánchez, T. M., Benedetto, J. L., and Carrera, M. G. 2003. Early Ordovician (Arenig) faunal assemblages from western Argentina: biodiversification trends in different geodynamic and palaeogeographic settings. Palaeogeography, Palaeoclimatology, Palaeoecology 196:343373.Google Scholar
Walker, L. J., Wilkinson, B. H., and Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. Journal of Geology 110:7587.Google Scholar