Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T17:18:02.633Z Has data issue: false hasContentIssue false

Structure and function of hindlimb feathers in Archaeopteryx lithographica

Published online by Cambridge University Press:  08 April 2016

Nick Longrich*
Affiliation:
Department of Biological Sciences, 2500 University Drive NW, University of Calgary, Calgary, Alberta T2N 1N4, Canada. E-mail: [email protected]

Abstract

This study examines the morphology and function of hindlimb plumage in Archaeopteryx lithographica. Feathers cover the legs of the Berlin specimen, extending from the cranial surface of the tibia and the caudal margins of both tibia and femur. These feathers exhibit features of flight feathers rather than contour feathers, including vane asymmetry, curved shafts, and a self-stabilizing overlap pattern. Many of these features facilitate lift generation in the wings and tail of birds, suggesting that the hindlimbs acted as airfoils. A new reconstruction of Archaeopteryx is presented, in which the hindlimbs form approximately 12% of total airfoil area. Depending upon their orientation, the hindlimbs could have reduced stall speed by up to 6% and turning radius by up to 12%. Presence of the “four-winged” planform in both Archaeopteryx and basal Dromaeosauridae indicates that their common ancestor used fore- and hindlimbs to generate lift. This finding suggests that arboreal parachuting and gliding preceded the evolution of avian flight.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abel, O. 1912. Grundzüge der Palaeobiologie der Wirbeltiere. E. Schweizerbartsche, Stuttgart.Google Scholar
Anderson, J. D. 2001. Fundamentals of aerodynamics. McGraw-Hill, Singapore.Google Scholar
Barsbold, R., Osmolska, H., Watabe, M., Currie, P. J., and Tsogtbaatar, K. 2000. A new oviraptorosaur (Dinosauria, Theropoda) from Mongolia: the first dinosaur with a pygostyle. Acta Palaeontologica Polonica 45:97106.Google Scholar
Beebe, C. W. 1915. A tetrapteryx stage in the ancestry of birds. Zoologica 2:3852.Google Scholar
Caple, G., Balda, R. P., and Willis, W. R. 1983. The physics of leaping animals and the evolution of preflight. American Naturalist 121:455467.Google Scholar
Chiappe, L. M. 2002. Basal bird phylogeny: problems and solutions. Pp. 448472in Chiappe, L. M. and Witmer, L. M., eds. Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley.Google Scholar
Christiansen, P., and Bonde, N. 2004. Body plumage in Archaeopteryx: a review, and new evidence from the Berlin specimen. Comptes Rendus Palevol 3:99118.Google Scholar
Cracraft, J. 1971. The functional morphology of the hindlimb of the domestic pigeon. Bulletin of the American Museum of Natural History 144:173268.Google Scholar
Currie, P. J., and Zhao, X.-J. 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30:20372081.Google Scholar
Czerkas, S. J., Zhang, D., Li, J., and Li, Y. 2002. Flying dromaeosaurs. Dinosaur Museum Journal 1:98126.Google Scholar
Dames, W. 1884. Ueber Archaeopteryx. Paläontologische Abhandlungen 2:119198.Google Scholar
Darwin, C. R. 1859. The origin of species. John Murray, London.Google Scholar
De Beer, G. R. 1954. Archaeopteryx lithographica. British Museum (Natural History), London.Google Scholar
Demes, B., Forchap, E., and Herwig, H. 1991. They seem to glide: are there aerodynamic effects in leaping prosimian primates? Zeitschrift für Morphologie und Anthropologie 78:373–85.Google Scholar
Dial, K. P. 2003. Wing-assisted incline running and the evolution of flight. Science 299:402404.Google Scholar
Elzanowski, A. 2002. Archaeopterygidae (Upper Jurassic of Germany). Pp. 129–59 in Chiappe, L. M. and Witmer, L. M., eds. Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley.Google Scholar
Emerson, S. B., and Koehl, M. A. R. 1990. The interaction of behavioral and morphological change in the evolution of a novel locomotor type. Evolution 44:19311946.Google Scholar
Essner, R. L. 2002. Three-dimensional launch kinematics in leaping, parachuting and gliding squirrels. Journal of Experimental Biology 208:24692477.Google Scholar
Evans, J. 1881. On portions of a Cranium and Jaw of the Archaeopteryx. Virtue and Co., London.Google Scholar
Evans, M. R. 2002. Birds' tails do act like delta wings but deltawing theory does not always predict the forces they generate. Proceedings of the Royal Society of London B 270:13791385.Google Scholar
Feduccia, A., 1993. Aerodynamic model for the early evolution of feathers provided by Propithecus (Primates, Lemuridae). Journal of Theoretical Biology 160:159164.Google Scholar
Feduccia, A. 1996. The origin and evolution of birds. Yale University Press, New Haven, Conn.Google Scholar
Feduccia, A., and Tordoff, H. B. 1979. Feathers of Archaeopteryx: asymmetric vanes indicate aerodynamic function. Science 203:10211022.Google Scholar
Gans, C., Darevski, I., and Tatarinov, L. P. 1987. Sharovipteryx, a reptilian glider? Paleobiology 13:415426.Google Scholar
Garner, J. P., Taylor, G. K., and Thomas, A. L. R. 1999. On the origins of birds: the sequence of character acquisition in the evolution of avian flight. Proceedings of the Royal Society of London B 266:1259–66.Google Scholar
Gatesy, S. M. 1995. Functional evolution of the hindlimb and tail from basal theropods to birds. Pp. 219234in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Gatesy, S. M., and Dial, K. P. 1996. From frond to fan: Archaeopteryx and the evolution of short-tailed birds. Evolution 50:20372048.Google Scholar
Gauthier, J., and Padian, K. P. 1985. Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight. Pp. 185197in Hecht, et al. 1985.Google Scholar
Gilmore, C. W. 1933. On the dinosaurian fauna of the Iren Dabasu Formation. Bulletin of the American Museum of Natural History 67:2378.Google Scholar
Guix, J. C., Santos, X., Montori, A., Llorente, G., and Carretero, M. O. 1997. Cosymbotus craspedotus (frilly gecko) and C. platyurus (flat-tailed gecko), gliding behavior. Herpetological Review 28:42.Google Scholar
Hecht, M. K. O., Ostrom, J. H., Viohl, G., and Wellnhofer, P., eds. 1985. The beginnings of birds. Proceedings of the International Archaeopteryx Conference. Freunde des Jura-Museums Eichstätt, Eichstätt.Google Scholar
Heilmann, G. 1926. The origin of birds. Witherby, London.Google Scholar
Heller, F. 1959. Ein Dritter Archaeopteryx—Fund aus den Solnhofener Plattenkalken von Lagenaltheim/Mfr. Erlanger Geologische Abhandlungen 31:325.Google Scholar
Hutchinson, J. R., and Gatesy, S. M. 2000. Adductors, abductors, and the evolution of archosaur locomotion. Paleobiology 26:734751.Google Scholar
Ji, Q., Norell, M. A., Gao, K.-Q., Ji, S.-A., and Ren, D. 2001. Distribution of integumentary structures in a feathered dinosaur. Nature 410:10841088.Google Scholar
Johanssen, L. C., and Lindhe-Norberg, U. M. 2001. Lift-based paddling in a diving grebe. Journal of Experimental Biology 204:16871696.Google Scholar
Johanssen, L. C., and Norberg, R. Å. 2003. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds. Nature 424:6568.Google Scholar
Kroo, I. 2001. Drag due to lift: concepts for prediction and reduction. Annual Review of Fluid Mechanics 33:587617.Google Scholar
Longrich, N. 2003. Archaeopteryx: two wings or four? Journal of Vertebrate Paleontology 23:72A.Google Scholar
Lucas, A. M., and Stettenheim, P. R. 1972. Avian anatomy: integument. Government Printing Office, Washington, D.C.Google Scholar
Marsh, O. C. 1880. Odontornithes, a monograph on the extinct birds of North America. Government Printing Office, Washington, D.C.Google Scholar
McGuire, J. A. 2003. Allometric prediction of locomotor performance: an example from Southeast Asian flying lizards. American Naturalist 161:337350.Google Scholar
Milne-Edwards, H. 1827. Nerf. In de Saint-Vincent, M. B., ed. Dictionnaire Classique de l'Histoire Naturelle. Rey et Grayer, Paris.Google Scholar
von Mises, R. 1945. Theory of flight. Dover, New York.Google Scholar
Munk, M. M. 1922. General biplane theory. Technical Notes, National Advisory Committee for Aeronautics 151:473517.Google Scholar
Norberg, R. Å. 1985. Function of vane asymmetry and shaft curvature in bird flight feathers: inferences on flight ability of Archaeopteryx. Pp. 303318in Hecht, et al. 1985.Google Scholar
Norberg, U. M. 1985. Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. American Naturalist 126:303327.Google Scholar
Norberg, U. M. 1990. Vertebrate flight. Springer, Berlin.Google Scholar
Norell, M. A., Ji, Q., Gao, K., Yuan, C., Zhao, Y., and Wang, L. 2002. ‘Modern’ feathers on a non-avian dinosaur. Nature 416:3637.Google Scholar
Novas, F. C. 1993. New information on the systematics and postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. Journal of Vertebrate Paleontology 13:400423.Google Scholar
Oliver, J. A. 1951. “Gliding” in amphibians and reptiles, with a remark on an arboreal adaptation in the lizard, Anolis carolinensis carolinensis, Voight. American Naturalist 85:171176.Google Scholar
Ostrom, J. H. 1979. Bird flight: how did it begin? American Scientist 67:4656.Google Scholar
Padian, K., and Olsen, P. E. 1989. Ratite footprints: implications and the stance and gait of Mesozoic theropods. Pp. 231241in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, New York.Google Scholar
Pennycuick, C. J. 1968. A wind-tunnel study of gliding flight in the pigeon Columba livia. Journal of Experimental Biology 49:509526.Google Scholar
Pennycuick, C. J. 1971. Control of gliding angle in Ruppell's griffon vulture, Gyps africanus. Journal of Experimental Biology 49:527555.Google Scholar
Pennycuick, C. J. 1972. Animal flight. Studies in Biology 33:168.Google Scholar
Pennycuick, C. J. 1986. Mechanical constraints on the evolution of flight. Memoirs of the California Academy of Sciences 8:8398.Google Scholar
Prandtl, L. 1924. Induced drag of multiplanes. Technical Notes, National Advisory Committee for Aeronautics 182:118.Google Scholar
Prum, R. O. 2003. Dinosaurs take to the air. Nature 421:323–24.Google Scholar
Rayner, J. M. V. 1986. Vertebrate flapping flight mechanics and aerodynamics, and the evolution of flight in bats. Pp. 1326in Nachtigall, W., ed. Bat flight—Fledermausflug. Fischer, Stuttgart.Google Scholar
Rietschel, S. 1985a. Feathers and wings of Archaeopteryx and the question of her flight ability. Pp. 251260in Hecht, et al. 1985.Google Scholar
Rietschel, S. 1985b. False forgery. Pp. 371376in Hecht, et al. 1985.Google Scholar
Rosén, M., and Hedenström, A. 2001. Gliding flight in a jackdaw: a wind tunnel study. Journal of Experimental Biology 204:11531166.Google Scholar
Russell, A. P. 1979. The origin of parachuting locomotion in gekkonid lizards (Reptilia: Gekkonidae). Zoological Journal of the Linnean Society 65:233249.Google Scholar
Speakman, J. R., and Thomson, S. C. 1994. Flight capabilities of Archaeopteryx. Nature 370:514.Google Scholar
Stewart, M. M. 1985. Arboreal habitat use and parachuting by a subtropical forest frog. Journal of Herpetology 19:391401.Google Scholar
Thomas, A. L. R. 1993. On the aerodynamics of birds' tails. Philosophical Transactions of the Royal Society of London B 340:361380.Google Scholar
Thomas, A. L. R. 1996. Why do birds have tails? The tail as a drag reducing flap, and trim control. Journal of Theoretical Biology 183:247253.Google Scholar
Vogt, C. 1880. Archaeopteryx macrura, an intermediate form between birds and reptiles. Ibis 4:434456.Google Scholar
Walker, C. A. 1981. New subclass of birds from the Cretaceous of South America. Nature 292:5153.Google Scholar
Williston, S. W. 1879. Are birds derived from dinosaurs? Kansas City Review of Science 3:457460.Google Scholar
Xu, X., and Zhang, F. 2005. A new maniraptoran dinosaur from China with long feathers on the metatarsus. Naturwissenschaften 92:173177.Google Scholar
Xu, X., Zhou, Z., and Wang, X. 2000. The smallest known non-avian theropod dinosaur. Nature 408:705708.Google Scholar
Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F., and Du, X. 2003. Four winged dinosaurs from China. Nature 421:335340.Google Scholar
Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F., and Du, X. 2005. Xu et al. reply. Nature 438:E3E4.Google Scholar
Yalden, D. 1984. What size was Archaeopteryx? Zoological Journal of the Linnean Society 82:177–88.Google Scholar
Young, B. A., Lee, C. E., and Daley, K. M. 2002. On a flap and a foot: aerial locomotion in the “flying” gecko, Ptychozoon kuhli. Journal of Herpetology 26:412418.Google Scholar
Zhang, F., and Zhou, Z. 2004. Leg feathers in an Early Cretaceous bird. Nature 431:925.Google Scholar
Zhang, F., Zhou, Z., Hou, L., and Gu, G. 2001. Early diversification of birds: evidence from a new opposite bird. Chinese Science Bulletin 46:945949.Google Scholar