Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T14:25:34.509Z Has data issue: false hasContentIssue false

Stable isotopic signals and photosymbiosis in Late Paleocene planktic foraminifera

Published online by Cambridge University Press:  08 February 2016

Steven D'Hondt
Affiliation:
Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island 02882
James C. Zachos
Affiliation:
Earth and Marine Sciences, University of California, Santa Cruz, California 95064
Gretchen Schultz
Affiliation:
Department of Geology, William Smith College, Geneva, New York 14456

Abstract

Late Paleocene planktic foraminifera exhibit strong positive correlations between carbon isotopic values and test mass, but negative correlations between oxygen isotopic values and test mass. Based on analogy with modern taxa, these trends are probably ecotypic and may or may not apply to an ontogenetic series. Among Acarinina and Morozovella species, the magnitude and direction of these trends resemble those of modern planktic foraminifera with dinoflagellate photosymbionts. This is consistent with current models of photosymbiosis and calcification in planktic foraminifera and suggests that Acarinina and Morozovella relied heavily on photosymbionts for nutrition.

Acarinina and Morozovella species resemble modern, strongly photosymbiotic taxa in their association with low and mid latitude nearsurface water masses. However, their test morphologies differ greatly from those of extant taxa that bear obligate photosymbionts. Earliest Paleocene taxa that exhibit a similar paleohabitat association and similar size-related isotopic trends are characterized by still different test morphologies. These comparisons suggest that (1) throughout geologic time, strong reliance on photosymbiont activity has been closely linked to habitat, but not to test morphology; (2) photosymbiosis has been a common and convergently evolved strategy of planktic foraminifera over geologic time, and (3) modern relationships between planktic foraminiferal test morphology and photosymbiont dependence are largely an artifact of geologically recent phylogenetic relationships and shared ecologic strategies.

Intersite comparison suggests that the stable isotopic signals of narrowly constrained size fractions of a late Paleocene Acarinina or Morozovella species can be used to reconstruct the magnitude and direction of relative variation in equilibrium stable isotopic values throughout its geographic and temporal range. This is supported by analogy with extant photosymbiotic taxa. However, since photosynthetic depletion of 12C leaves 13C-enriched HCO3-for calcification, the carbon isotopic values of Acarinina and Morozovella tests may have been consistently greater than paleoseawater values. Failure to account for this effect could lead to overestimation of late Paleocene marine productivity.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahmadjian, V., and Paracer, S. 1986. Symbiosis: an introduction to biological associations. University Press of New England, Hanover.Google Scholar
Anderson, O. R. 1983. Radiolaria. Springer, New York.CrossRefGoogle Scholar
Anderson, O. R., and , A. W. H. 1976. The ultrastructure of a planktonic foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates. Journal of Foraminiferal Research 6:121.CrossRefGoogle Scholar
Arthur, M. A., Dean, W. E., Zachos, J. C., Kaminski, M., Hagerty-Reig, S., and Elmstrom, C. 1989. Geochemical expression of early diagenesis in middle Eocene-lower Oligocene pelagic sediments in the southern Labrador Sea, Site 647, ODP Leg 105. Pp. 111136in Srivastava, S. P. and Arthur, M. A., eds. Scientific results of the Ocean Drilling Program, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Berger, W. H., Killingly, J. S., and Vincent, E. 1978. Stable isotopes in deep sea carbonates: box core ERDC-92, west equatorial Pacific. Oceanologica Acta 1:203216.Google Scholar
Boersma, A. 1984. Campanian through Paleocene paleotemperature and carbon isotope sequence and the Cretaceous-Teritary boundary in the Atlantic Ocean. Pp. 247278in Berggren, W. A. and van Couvering, J. A., eds. Catastrophes and earth history. Princeton University Press, New Jersey.Google Scholar
Boersma, A., and Premoli Silva, I. 1983. Paleocene planktonic foraminiferal biogeography and paleoceanography of the Atlantic Ocean. Micropaleontology 29:355381.CrossRefGoogle Scholar
Boersma, A., and Premoli Silva, I. 1989. Atlantic Paleogene biserial heterohelicid foraminifera and oxygen minima. Paleoceanography 4:271286.CrossRefGoogle Scholar
Boersma, A., Shackleton, N. J., Hall, M., and Given, Q. 1979. Carbon and oxygen isotope variations at DSDP Site 384 (North Atlantic) and some paleotemperatures and carbon isotope variations in the Atlantic Ocean. Pp. 695717in Tcholke, B. E. and Vogt, P. R., eds. Initial reports of the Deep Sea Drilling Project, 43. U.S. Government Printing Office, Washington, D.C.Google Scholar
Bolli, H. M. 1957. The genera Globigerina and Globorotalia in the Paleocene-lower Eocene Lizard Springs Formation of Trinidad, B.W.I. Pp. 6181in Loeblich, A. R. et al., eds. Studies in Foraminifera, United States National Museum Bulletin 215.Google Scholar
Bouvier-Soumagnac, Y., and Duplessy, J. C. 1985. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research 15:302320.CrossRefGoogle Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12:133149.CrossRefGoogle Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Historical Biology 5:3763.CrossRefGoogle Scholar
D'Hondt, S., and Keller, G. 1991. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous-Tertiary boundary. Marine Micropaleontology 17:77118.CrossRefGoogle Scholar
D'Hondt, S., and Zachos, J. C. 1993. On stable isotopic variation and earliest Paleocene planktonic foraminifera. Paleoceanography 8:527547.CrossRefGoogle Scholar
Erez, J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature (London) 273:199202.CrossRefGoogle Scholar
Erez, J. 1983. Calcification rates, photosynthesis and light in planktonic foraminifera. Pp. 307312in Westbroek, P. and de Jong, E. W., eds. Biomineralization and biological metal accumulation. D. Riedel, Dordrecht, Holland.CrossRefGoogle Scholar
Erez, J., and Luz, B. 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochemical et Cosmochimica Acta 47:10251031.CrossRefGoogle Scholar
Fairbanks, R. G., Wiebe, P. H., and , A. W. H. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207:6163.CrossRefGoogle ScholarPubMed
Gastrich, M. D. 1987. Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. Journal of Phycology 23:623632.CrossRefGoogle Scholar
Goreau, T. F. 1963. Calcium carbonate deposition by coralline algae and corals in relation to their role as reef builders. Annals of the New York Academy of Science 109:127167.CrossRefGoogle Scholar
Hart, M. B. 1980. A water-depth model for the evolution of the planktonic Foraminiferida. Nature (London) 286:252254.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Imbrie, J., and Kipp, N. G. 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. Pp. 72181in Turekian, K. K., ed. The late Cenozoic glacial ages. Yale University Press, New Haven.Google Scholar
Jørgensen, B. B., Erez, J., Revsbech, N. P., and Cohen, Y. P. 1985. Symbiotic photosynthesis in the planktonic foraminifera, Globigerinoides sacculifer (Brady), studies with microelectrodes. Limnology and Oceanography 30:12531267.CrossRefGoogle Scholar
Killingley, J. S. 1983. Effects of diagenetic recrystallization on 18O/16O values of deep sea sediments. Nature (London) 301:594596.CrossRefGoogle Scholar
Lee, J. J., and Bock, W. D. 1976. The importance of feeding in two species of soritid foraminifera with algal symbionts. Bull. Marine Science 26:530537.Google Scholar
Liu, C., and Olsson, R. K. 1992. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research 22:328346.CrossRefGoogle Scholar
Lohmann, G. P., and Schweitzer, P. N. 1990. Globorotalia truncatulinoides' growth and chemistry as probes of the past thermocline: 1. shell size. Paleoceanography 5:5575.CrossRefGoogle Scholar
Margulis, L. 1970. Origin of eukaryotic cells. Yale University Press, New Haven.Google Scholar
Matter, A., Douglas, R. G., and Perch-Nielsen, K. 1975. Fossil preservation, geochemistry and diagenesis of pelagic carbonates from Shatsky Rise, N. W. Pacific. Pp. 891907in Larson, R. L. and Moberly, R., eds. Initial Reports of the Deep Sea Drilling Project, 32. U.S. Government Printing Office, Washington D.C.Google Scholar
McConnaughy, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53:151162.CrossRefGoogle Scholar
McConnaughy, T. 1989b. 13C and 18O isotopic disequlibrium in biological carbonates: II. In vitro simulation of kinetic isotopic effects. Geochimica et Cosmochimica Acta 53:163171.CrossRefGoogle Scholar
Norris, R. D. 1991. Parallel evolution in the keel structure of planktonic foraminifera. Journal of Foraminiferal Research 21:319331.CrossRefGoogle Scholar
Oppo, D. W., and Fairbanks, R. G. 1989. Carbon isotope composition of tropical surface water during the past 22,000 years. Paleoceanography 4:333351.CrossRefGoogle Scholar
Premoli Silva, I., and Boersma, A. 1989. Atlantic Paleogene planktonic foraminiferal bioprovincial indices. Marine Micropaleontology 14:357371.CrossRefGoogle Scholar
Pearson, P., Shackleton, N., and Hall, M. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP site 523, South Atlantic. Journal of Foraminiferal Research 23:123140.CrossRefGoogle Scholar
Ravelo, C. 1991. Reconstructing the tropical Atlantic seasonal thermocline using planktonic foraminifera. Ph.D. dissertation. Columbia University, New York.Google Scholar
Schweitzer, P. N., and Lohmann, G. P. 1991. Ontogeny and habitat of modern menardiiform planktonic foraminifera. Journal of Foraminiferal Research 21:332346.CrossRefGoogle Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research 15:321336.CrossRefGoogle Scholar
Sikes, C. S., Roer, R. D., and Wilbur, K. M. 1980. Photosynthesis and coccolith formation: inorganic carbon sources and net inorganic reaction of deposition. Limnology and Oceanography 5:248261.CrossRefGoogle Scholar
Smith, D. C., and Douglas, A. E. 1987. The biology of symbiosis. Edward Arnold, London.Google Scholar
Spero, H. J. 1991. Experimental evidence for stable isotopic disequilibria in the planktonic foraminifera Globigerina bulloides. Eos, Transactions, American Geophysical Union 72:155156.Google Scholar
Spero, H. J. 1992. Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater ΣCO2? Marine Micropaleontology 19:275285.CrossRefGoogle Scholar
Spero, H. J., and DeNiro, M. J. 1987. The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. Symbiosis 4:213228.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktic foraminifer Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontology 22:193232.CrossRefGoogle Scholar
Spero, H. J., and Parker, S. L. 1985. Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. Journal of Foraminiferal Research 15:273281.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1988. Extracting environmental information from planktonic foraminiferal δ13C data. Nature (London) 335:717719.CrossRefGoogle Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope “vital effect” black box, 2 quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6:639655.CrossRefGoogle Scholar
Toumarkine, M., and Luterbacher, H. 1985. Paleocene and Eocene planktic foraminifera. Pp. 87154in Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge University Press.Google Scholar
Turner, J. V. 1982. Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochimica et Cosmochimica Acta 46:11831191.CrossRefGoogle Scholar
Vandermeulen, J. H., Davis, N. D., and Muscative, L. 1972. The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Marine Biology 16:185191.CrossRefGoogle Scholar
Wu, G., and Berger, W. H. 1989. Planktonic foraminifera: differential dissolution and the Quaternary stable isotope record in the west equatorial Pacific. Paleoceanography 4:181198.CrossRefGoogle Scholar