Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T18:13:13.892Z Has data issue: false hasContentIssue false

Spatial distributions of Tribrachidium, Rugoconites, and Obamus from the Ediacara Member (Rawnsley Quartzite), South Australia

Published online by Cambridge University Press:  13 March 2023

Phillip C. Boan*
Affiliation:
Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California 92521, U.S.A. E-mail: [email protected], [email protected], [email protected]
Scott D. Evans
Affiliation:
Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, Florida 32304, U.S.A. E-mail: [email protected]
Christine M. S. Hall
Affiliation:
Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California 92521, U.S.A. E-mail: [email protected], [email protected], [email protected]
Mary L. Droser
Affiliation:
Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California 92521, U.S.A. E-mail: [email protected], [email protected], [email protected]
*
*Corresponding author.

Abstract

The spatial distribution of in situ sessile organisms, including those from the fossil record, provides information about life histories, such as possible dispersal and/or settlement mechanisms, and how taxa interact with one another and their local environments. At Nilpena Ediacara National Park (NENP), South Australia, the exquisite preservation and excavation of 33 fossiliferous bedding planes from the Ediacara Member of the Rawnsley Quartzite reveals in situ communities of the Ediacara Biota. Here, the spatial distributions of three relatively common taxa, Tribrachidium, Rugoconites, and Obamus, occurring on excavated surfaces were analyzed using spatial point pattern analysis. Tribrachidium have a variable spatial distribution, implying that settlement or post-settlement conditions/preferences had an effect on populations. Rugoconites display aggregation, possibly related to their reproductive methods in combination with settlement location availability at the time of dispersal and/or settlement. Additionally, post-settlement environmental controls could have affected Rugoconites on other surfaces, resulting in lower populations and densities. Both Tribrachidium and Rugoconites also commonly occur as individuals or in low numbers on a number of beds, thus constraining possible reproductive strategies and environmental/substrate preferences. The distribution of Obamus is consistent with selective settlement, aggregating near conspecifics and on substrates of mature microbial mat. This dispersal process is the first example of substrate-selective dispersal among the Ediacara Biota, thus making Obamus similar to numerous modern sessile invertebrates with similar dispersal and settlement strategies.

Resumen

Resumen

La distribución espacial de los organismos sésiles in situ, incluyendo los del registro fósil, brinda información sobre las historias de vida, tal como los posibles mecanismos de dispersión y/o asentamiento, y sobre cómo los taxones interactúan entre sí y entre sus entornos locales. En el Parque Nacional Nilpena Ediacara (NENP), Australia Meridional, la excelente preservación y excavación de 33 planos de lecho fosilífero del Miembro Ediacara de la Cuarcita Rawnsley revela comunidades in situ de la biota ediacárica. En este estudio analizamos las distribuciones espaciales de tres taxones relativamente comunes, Tribrachidium, Rugoconites y Obamus, que se encuentran en superficies excavadas mediante el análisis de patrones de puntos espaciales. Tribrachidium tiene una distribución espacial variable, lo que implica que las condiciones/preferencias durante o después del asentamiento tuvieron un efecto en las poblaciones. Rugoconites muestran agregación, posiblemente relacionado con sus métodos reproductivos en combinación con la disponibilidad de lugares de asentamiento en el momento de la dispersión y/o asentamiento. Además, los controles ambientales posteriormente al asentamiento podrían estar afectando a Rugoconites en otras superficies, lo que resultaría en poblaciones y densidades más bajas. Tanto Tribrachidium como Rugoconites ocurren como individuos en varios lechos, restringiendo las posibles estrategias reproductivas y las preferencias ambientales/de sustrato. La distribución de Obamus es consistente con un asentamiento selectivo, agregando cerca de sus congéneres y sobre sustratos de tapete microbiano maduro. Este proceso de dispersión es el primer ejemplo de dispersión selectiva de sustrato entre la biota ediacárica, lo que hace que Obamus sea similar a numerosos invertebrados sésiles modernos con estrategias similares de dispersión y asentamiento.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ambroso, S., Gori, A., Dominguez-Carrió, C., Gill, J., Berganzo, E., Teixidó, N., Greenacre, M., and Rossi, S.. 2013. Spatial distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum in coastal bottoms (Cap de Creus, northwestern Mediterranean Sea). Marine Biology 160:30593070.CrossRefGoogle Scholar
Atkinson, P. M., Foody, G. M., Gething, P. W., Mathur, A., and Kelly, C. K.. 2007. Investigating spatial structure in specific tree species in ancient semi-natural woodland using remote sensing and marked point pattern analysis. Ecography 30:88104.Google Scholar
Baddeley, A., Rubak, E., and Turner, R.. 2016. Spatial point patterns: methodology and applications with R. Chapman and Hall Books, Boca Raton, Fla.Google Scholar
Ben-Said, M. 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecological Processes 10:123.CrossRefGoogle Scholar
Boag, T. H., Darroch, S. A. F., and Laflamme, M.. 2016. Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42:574594.CrossRefGoogle Scholar
Bobrovskiy, I., Hope, J. M., Ivantsov, A., Nettersheim, B. J., Hallman, C., and Brocks, J. J.. 2018. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361:12461249.CrossRefGoogle ScholarPubMed
Brenchley, P. J. and Harper, D. A. T.. 1998. Palaeoecology: ecosystems, environments and evolution. Chapman and Hall, London.Google Scholar
Carlon, D. B., and Oslon, R. R.. 1993. Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. Journal of Experimental Marine Biology and Ecology 173:247263.CrossRefGoogle Scholar
Carrer, M., Castagneri, D., Popa, I., Pividori, M., and Lingua, E.. 2018. Tree spatial patterns and stand attributes in temperate forests: the importance of plot size, sampling design, and null model. Forest Ecology and Management 407:125134.CrossRefGoogle Scholar
Chang, C. Y., and Marshall, D. J.. 2016. Spatial pattern of distribution of marine invertebrates within a subtidal community: do communities vary more among patches or plots? Ecology and Evolution 6:83308337.CrossRefGoogle ScholarPubMed
Chase, A. L., Dijkstra, J. A., and Harris, L. G.. 2016. The influence of substrate material on ascidian larval settlement. Marine Pollution Bulletin 106:3542.CrossRefGoogle ScholarPubMed
Clapham, M. E., Narbonne, G. M., and Gehling, J. G.. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Coutts, F. J., Bradshaw, C. J. A., García-Bellido, D. C., and Gehling, J. G.. 2018. Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: implications and autecological interpretations. Gondwana Research 55:2129.CrossRefGoogle Scholar
Cunningham, J. A., Liu, A. G., Bengtson, S., and Donoghue, P. C. J. 2017. The origin of animals: can molecular clocks and the fossil record be reconciled. Bioessay 39:117.CrossRefGoogle ScholarPubMed
Darroch, S. A. F., Laflamme, M., and Clapham, M. E.. 2013. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology 39:591608.CrossRefGoogle Scholar
Darroch, S. A. F., Rahman, I. A., Gibson, B., Racicot, R. A., and Laflamme, M.. 2017. Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biology Letters 13:0170033.CrossRefGoogle ScholarPubMed
Davis, A. R., and Campbell, D. J.. 1996. Two levels of spacing and limits to local population density for settled larvae of the ascidian Clavelina moluccensis: a nearest-neighbour analysis. Oecologia 108:701707.CrossRefGoogle ScholarPubMed
De los Ríos, P. and Carreño, E.. 2020. Spatial distribution in marine invertebrates in rocky shore of Araucania Region (38° S, Chile). Brazilian Journal of Biology 80:362367.CrossRefGoogle ScholarPubMed
Denley, D., Metaxas, A., and Short, J.. 2014. Selective settlement by larvae of Membranipora membranacea and Electra pilosa (Ectoprocta) along kelp blades in Nova Scotia, Canada. Aquatic Biology 21:4756.CrossRefGoogle Scholar
Dhungana, A., and Mitchell, E. G.. 2021. Facilitating corals in an early Silurian deep-water assemblage. Palaeontology 64:359370.CrossRefGoogle Scholar
Droser, M. L., and Gehling, J. G.. 2008. Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science 319:16601662.CrossRefGoogle Scholar
Droser, M. L., Tarhan, L. G., and Gehling, J. G.. 2017. The rise of animals in a changing environment: global ecological innovation in the late Ediacaran. Annual Review of Earth and Planetary Sciences 45:593617.CrossRefGoogle Scholar
Droser, M. L., Gehling, J. G., Tarhan, L. G., Evans, S. D., Hall, C. M. S., Hughes, I. V., Hughes, E. B., Dzaugis, M. E., Dzaugis, M. P., Dzaugis, P. W., and Rice, D.. 2019. Piecing together the puzzle of the Ediacara Biota: excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Paleogeography, Paleoclimatology, Palaeoecology 23:181194.Google Scholar
Droser, M. L., Tarhan, L. G., Evans, S. D., Surprenant, R. L., and Gehling, J. G.. 2020. Biostratinomy of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for depositional environments, ecology and biology of Ediacara organisms. Interface Focus 10: 20190100.CrossRefGoogle ScholarPubMed
Droser, M. L., Evans, S. D., Tarhan, L. G., Surprenant, R. L., Hughes, I. V., Hughes, E. B., and Gehling, J. G.. 2022. What happens between depositional events, stays between depositional events: the significance of organic mat surfaces in the capture of Ediacara communities and the sedimentary rocks that preserve them. Frontiers in Earth Science 10. doi: 10.3389/feart.2022.826353.CrossRefGoogle Scholar
Dunn, F. S., Liu, A. G., and Donoghue, P. C. J.. 2018. Ediacaran developmental biology. Biological Reviews 93:914932.CrossRefGoogle ScholarPubMed
Dunn, F. S., Liu, A. G., Grazhdankin, D. V., Vixseboxse, P., Flannery-Sutherland, J., Green, E., Harris, S., Wilby, P. R., and Donoghue, P. C.. 2021. The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs. Science Advances 7:eabe0291.CrossRefGoogle ScholarPubMed
Dunn, F. S., Kenchington, C. G., Parry, L. A., Clark, J. W., Kendall, R. S., and Wilby, P. R.. 2022. A crown-group cnidarian from the Ediacaran of Charnwood Forest. Nature Ecology and Evolution 6:10951104.CrossRefGoogle ScholarPubMed
Dzaugis, P. W., Evans, S. D., Droser, M. L., Gehling, J. G., and Hughes, I. V.. 2018. Stuck in the mat: Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia. Australian Journal of Earth Sciences 67:17.Google Scholar
Erwin, D. H. 2015. Novelty and innovation in the history of life. Current Biology 25: R930R940.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2021. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 147:dev182899.CrossRefGoogle Scholar
Erwin, D. H., and Valentine, J. W.. 2013. The Cambrian Explosion: The Construction of Animal Biodiversity. Roberts & Co, Greenwood, Colo.Google Scholar
Evans, S. D., Gehling, J. G., and Droser, M. L.. 2019. Slime travelers: early evidence of animal mobility and feeding in a organic mat world. Geobiology 17:490509.CrossRefGoogle Scholar
Evans, S. D., Dzaugis, P. W., Droser, M. L., and Gehling, J. G.. 2020a. You can get anything you want from Alice's Restaurant Bed: exceptional preservation and an unusual fossil assemblage from a newly excavated bed (Ediacara Member, Nilpena, South Australia). Australian Journal of Earth Science 67:873883.CrossRefGoogle Scholar
Evans, S. D., Hughes, I. V., Gehling, J. G., and Droser, M. L.. 2020b. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proceedings of the National Academy of Sciences USA 117:78457850.CrossRefGoogle ScholarPubMed
Evans, S. D., Droser, M. L., and Erwin, D. H.. 2021a. Developmental processes in Ediacara macrofossils. Proceedings of the Royal Society of London B 288:20203055.Google ScholarPubMed
Evans, S. D., Gehling, J. G., Erwin, D. H., and Droser, M. L.. 2021b. Ediacara growing pains: modular addition and development in Dickinsonia costata. Paleobiology 48:8398.CrossRefGoogle Scholar
Fedonkin, M. A. 1984. Promorphology of Vendian Radialia. Pp. 4950 in Ivanovsky, A. B. and Ivanov, I. B., eds. Stratigraphy and paleontology of the most ancient Phanerozoic. Nauka, Moscow. [In Russian.]Google Scholar
Franklin, J., and Santos, E. V.. 2010. A spatially explicit census reveals population structure and recruitment patterns for a narrowly endemic pine, Pinus torreyana. Plant Ecology 212:293306.CrossRefGoogle Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:4057.CrossRefGoogle Scholar
Gehling, J. G. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100:6595.CrossRefGoogle Scholar
Gehling, J. G., and Droser, M. L.. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews 96:196206.CrossRefGoogle Scholar
Gehling, J. G., and Droser, M. L.. 2013. How well do fossil assemblages of the Ediacara Biota tell time. Geology 41:447450.CrossRefGoogle Scholar
Gehling, J. G., and Droser, M. L.. 2018. Ediacaran scavenging as a prelude to predation. Emerging Topics in Life Sciences 2:213222.Google ScholarPubMed
Gehling, J. G., García-Bellido, D. C., Droser, M. L., Tarhan, L. G., and Runnegar, B.. 2019. The Ediacaran–Cambrian transition: sedimentary facies versus extinction. Estudios Geológicos 75:e099.CrossRefGoogle Scholar
Gibson, B. M., Rahman, I. A., Maloney, K. M., Racicot, R. A., Mocke, H., Laflamme, M., and Darroch, S. A. F.. 2019. Gregarious suspension feeding in a modular Ediacaran organism. Science Advances 5:eaaw0260.CrossRefGoogle Scholar
Gibson, B. M., Darroch, S. A. F., Maloney, K. M., and Laflamme, M.. 2021. The importance of size and location within gregarious populations of Ernietta plateauensis. Frontiers in Earth Science 9. doi: 10.3389/feart.2021.749150.CrossRefGoogle Scholar
M. F., Glaessner, and Daily, B.. 1959. The geology and late Precambrian fauna of the Ediacara Fossil Reserve. Records of the South Australia Museum 13:396401.Google Scholar
Glaessner, M. F. and Wade, M.. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599628.Google Scholar
Grazhdankin, D. V., and Yu. Ivantsov, A.. 1995. Reconstructions of biotopes of ancient metazoa of the Late Vendian White Sea Biota. Paleontological Journal 30:674678.Google Scholar
Guy-Haim, T., Rilov, G., and Achituv, Y.. 2015. Different settlement strategies explain intertidal zonation of barnacles in the Eastern Mediterranean. Journal of Experimental Marine Biology and Ecology 463:125134.CrossRefGoogle Scholar
Hall, C. M. S., Droser, M. L., Gehling, J. G., and Dzaugis, M. E. 2015. Paleoecology of the enigmatic Tribrachidium: a new data from the Ediacaran of South Australia. Precambrian Research 269:183194.CrossRefGoogle Scholar
Hall, C. M. S., Droser, M. L., and Gehling, J. G.. 2018. Sizing up Rugoconites: a study of the ontogeny and ecology of an enigmatic Ediacaran genus. AP Memoirs 51:717.Google Scholar
Harms, K. E., Wright, S. J., Calderon, O., Hernandez, A., and Herre, E. A.. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 40:493495.CrossRefGoogle Scholar
He, F., and Legendre, P.. 2002. Species diversity patterns derived from species-area models. Ecology 83:11851198.Google Scholar
Hooper, R. C., and Eichhorn, M. P.. 2016. Too close for comfort: spatial patterns in acorn barnacle populations. Population Ecology 58:231239.CrossRefGoogle Scholar
Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D.. 2008. Statistical analysis of modelling of spatial point patterns. Wiley, Chichester, U.K.Google Scholar
Ivantsov, A. Yu., and Zakrevskaya, M. A.. 2021. Trilobozoa, Precambrian tri-radial organisms. Paleontological Journal 55:727741.CrossRefGoogle Scholar
Jacquemyn, H., Brys, R., Vandepitte, K., Honnay, O., Roldan-Ruiz, I., and Wiegand, T.. 2007. A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist 176:448459.CrossRefGoogle ScholarPubMed
Jenkins, S. R. 2005. Larval habitat selection, not larval supply, determines settlement patterns and adult distribution in two chthamalid barnacles. Journal of Animal Ecology 79:793904.Google Scholar
Karlson, R. H., Hughes, T. P., and Karlson, S. R.. 1996. Density-dependent dynamics of soft coral aggregations: the significance of clonal growth and form. Ecology 77:15921599.CrossRefGoogle Scholar
Kenkel, N. C. 1988. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology 69:10171024.CrossRefGoogle Scholar
Keough, M. J. 1984. Kin-Recognition and the spatial distribution of larvae of the bryozoan Bugula neritina (L.). Evolution 38:142147.Google ScholarPubMed
Laflamme, M., Xiao, S., and Kowalewski, M.. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences USA 106:1443814443.CrossRefGoogle ScholarPubMed
Law, R., Illian, J., Burslem, D. F. R. P., Gratzer, G., Gunatilleke, C. V. S., and Gunatilleke, I. A. U. N.. 2009. Ecological information from spatial patterns of plants: insight from point process theory. Journal of Ecology 97:616628.CrossRefGoogle Scholar
Lesneski, K. C., D'Aloia, C. C., Fortin, M. J., and Buston, P. M.. 2019. Disentangling the spatial distributions of a sponge-dwelling fish and its host sponge. Marine Biology 166:18..CrossRefGoogle Scholar
Lin, Y., Chang, L., Yang, K., Wang, H., and Sun, I.. 2011. Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia 165:175184.CrossRefGoogle ScholarPubMed
Maldonado, M., and Riesgo, A.. 2008. Reproduction in the phylum Porifera: a synoptic overview. Treballs de la SCB 59:2949.Google Scholar
Mallison, H., and Wings, O.. 2014. Photogrammetry in paleontology—a practical guide. Journal of Paleontological Techniques 12:13.Google Scholar
Manríquez, P. H., and Castilla, J. C.. 2007. Roles of larval behaviour and microhabitat traits in determining spatial aggregations in the ascidian Pyura chilensis. Marine Ecology Progress Series 332:155165.CrossRefGoogle Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D, Fedonkin, M. A., and Kirschvink, J. L.. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288:841845.CrossRefGoogle ScholarPubMed
Miron, G., Boudreau, B., and Bourget, E.. 1999. Intertidal barnacle distribution: a case study using multiple working hypotheses. Marine Ecology Progress Series 189:205219.CrossRefGoogle Scholar
Mitchell, E. G., and Butterfield, N. J.. 2018. Spatial analyses of Ediacaran communities at Mistaken Point. Paleobiology 44:4057.CrossRefGoogle Scholar
Mitchell, E. G., and Harris, S.. 2020. Mortality, population and community dynamics of the glass sponge dominated community “the forest of the weird” from the Ridge Seamount, Johnston Atoll, Pacific Ocean. Frontiers in Marine Science 7:121.CrossRefGoogle Scholar
Mitchell, E. G. and Kenchington, C. G.. 2018. The utility of height for the Ediacaran organisms of Mistaken Point. Nature Ecology and Evolution 2:12181222.CrossRefGoogle ScholarPubMed
Mitchell, E. G., Kenchington, C. G., Liu, A. G., Matthews, J. J., and Butterfield, N. J.. 2015. Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature Letters 524:343346.CrossRefGoogle ScholarPubMed
Mitchell, E. G., Kenchington, C. G., Harris, S., and Wilby, P. R.. 2018. Revealing rangeomorph species characters using spatial analysis. Canadian Journal of Earth Sciences 55:12621270.CrossRefGoogle Scholar
Mitchell, E. G., Harris, S., Kenchington, C. G., Vixseboxse, P., Robers, L., Clark, C., Dennis, A., Liu, A. G., and Wilby, P. R.. 2019. The importance of neutral over niche processes in structing Ediacaran early animal communities. Ecology Letters 22:20282038.CrossRefGoogle Scholar
Mitchell, E. G., Bobkov, N., Bykova, N., Dhungana, A., Kolesnikov, A. V., Hogarth, I. R. P., Liu, A. G., Mustill, T. M. R., Sozonov, N., Rogov, V. I., Xiao, S. and Grazhdankin, D. V.. 2020.The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 10:114.CrossRefGoogle ScholarPubMed
Mitchell, E. G., Evans, S. D., Chen, Z., and Xiao, S.. 2022. A new approach for investigating spatial relationships of ichnofossils: a case study of Ediacaran–Cambrian animal traces. Paleobiology 48:557575.CrossRefGoogle Scholar
Narbonne, G. M., and Hofmann, H. J.. 1987. Ediacaran Biota of the Wernecke Mountains, Yukon, Canada. Paleontology 30:647676.Google Scholar
Neuman, M. J., Wang, S., Busch, S., Friedman, C., Gruenthal, K., Gustafson, R., Kushner, D., Stierhoff, K., Vanblaricom, G., and Wright, S.. 2018. A status review of Pinto Abalone (Haliotis kamtschatkana) along the west coast of North America: interpreting trends, addressing uncertainty, and assessing risk for a wide-ranging marine invertebrate. Journal of Shellfish Research 37:869910.CrossRefGoogle Scholar
Pawlik, J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review 30:273335.Google Scholar
Rahman, I. A., Darroch, S. A. F., Racicot, R. A., and Laflamme, M.. 2015. Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances 1:18.CrossRefGoogle ScholarPubMed
Rodríguez, S. R., Ojeda, F. P., and Inestrosa, N. C.. 1993. Settlement of benthic marine invertebrates. Marine Ecology Progress Series 97:193207.CrossRefGoogle Scholar
Rodriguez-Perez, A., Sanderson, W. G., Møller, L. F., Henry, T. B., and James, M.. 2020. Return to sender: the influence of larval behaviour on the distribution and settlement of the European oyster Ostrea edulis. Aquatic Conservation: Marine and Freshwater Ecosystems 30:21162132.CrossRefGoogle Scholar
Rossi, S., and Snyder, M. J.. 2001. Competition for space among sessile marine invertebrates: changes in HSP70 expression in two Pacific cnidarians. Biological Bulletin 201:385393.CrossRefGoogle ScholarPubMed
Sampayo, E. M., Roff, G., Sims, C. A., Rachello-Dolmen, P. G., and Pandolfi, J. M.. 2020. Patch size drives settlement success and spatial distribution of coral larvae under space limitation. Coral Reefs 39:387396.CrossRefGoogle Scholar
Schleicher, J., Meyer, K. M., Wiegand, K., Schurr, F. M., and Ward, D.. 2011. Disentangling facilitation and seed dispersal from environmental heterogeneity as mechanisms generating associations between savanna plants. Journal of Vegetation Science 22:10381048.CrossRefGoogle Scholar
Schmidt, G. H. 1982. Random and aggregative settlement in some sessile marine invertebrates. Marine Ecology Progress Series 9:97100.CrossRefGoogle Scholar
Surprenant, R. L., Gehling, J. G., and Droser, M. L.. 2020. Biological and ecological insights from the preservational variability of Funisia dorothea, Ediacara Member, South Australia. Palaios 35:359376.CrossRefGoogle Scholar
Takabayashi, M., Carter, D. A., Lopez, J. V., and Hoegh-Guldberg, O.. 2002. Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 22:1722.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., and Gehling, J. G.. 2015a. Depositional and preservational environments of the Ediacara Member, Rawnsley Quartzite (South Australia): Assessment of paleoenvironmental proxies and the timing of “ferruginization.” Paleogeography, Paleoclimatology, Palaeoecology 434:413.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., Gehling, J. G., and Dzaugis, M. P.. 2015b. Taphonomy and morphology of the Ediacaran form genus Aspidella. Precambrian Research 256:124136.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., Gehling, J. G., and Dzaugis, M. P.. 2017. Microbial mat sandwiches and other anactualistic sedimentary features of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for interpretation of the Ediacaran sedimentary record. Palaios 32:181194.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., and Gehling, J. G.. 2022. Picking out the warp and weft of the Ediacaran seafloor: Paleoenvironment and paleoecology of an Ediacara textured organic surface. Precambrian Research 369:106539.CrossRefGoogle Scholar
Velázquez, E., Martínez, I., Getzin, S., Moloney, K. A., and Wiegand, T.. 2016. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39:10421055.CrossRefGoogle Scholar
Vixseboxse, P. B., Kenchington, C. G., Dunn, F. S., and Mitchell, E. G.. 2021. Orientations of Mistaken Point fronds indicate morphology impacted ability to survive turbulence. Frontiers in Earth Science 9:762824.CrossRefGoogle Scholar
Wangensteen, O. S., Turon, X., and Placin, C.. 2016. Reproductive strategies in marine invertebrates and the structuring of marine animal forests. Pp. 571594 in Rossi, S., Bramanti, L., Gori, A., and Orejas, C., eds. Marine animal forests. Springer, Cham, Switzerland.Google Scholar
Watson, D. M., Roshier, D. A., and Wiegand, T.. 2007. Spatial ecology of a root parasite—from pattern to process. Austral Ecology 32:359369.CrossRefGoogle Scholar
Wiegand, T., and Moloney, K. A.. 2004. Rings, circles, and null-models for point pattern analysis in ecology. OIKOS 104:209229.CrossRefGoogle Scholar
Wiegand, T. and Moloney, K. A.. 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall, Boca Raton, Fla.Google Scholar
Wiegand, T., Kissling, D.., Cipriotti, P. A., and Aguiar, M. R.. 2006. Extending point pattern analysis for objects of finite size and irregular shape. Journal of Ecology 94:827837.CrossRefGoogle Scholar
Wiegand, T., Gunatilleke, S., and Gunatilleke, N.. 2007a. Species associations in a heterogeneous Sri Lankan dipterocarp forest. American Naturalist 170:E77E95.CrossRefGoogle Scholar
Wiegand, T., Gunatilleke, S., Gunatilleke, N., and Okuda, T.. 2007b. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88:30883102.CrossRefGoogle ScholarPubMed
Wiegand, T., Martínez, I., and Huth, A.. 2009. Recruitment in tropical tree species: revealing complex spatial patterns. American Naturalist 175:E106E120.CrossRefGoogle Scholar
Wiegand, T., Grabarnik, P., P., , and Stoyan, D. 2016. Envelope tests for spatial point patterns with and without simulation. Ecosphere 7:e01365.CrossRefGoogle Scholar
Zakrevskaya, M. 2014. Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Paleogeography, Paleoclimatology, Palaeoecology 410:2738.CrossRefGoogle Scholar
Zillio, T., and He, F.. 2010. Modeling spatial aggregation of finite populations. Ecology 92:36983706.CrossRefGoogle Scholar