Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T18:33:59.794Z Has data issue: false hasContentIssue false

Size-driven preservational and macroecological biases in the latest Maastrichtian terrestrial vertebrate assemblages of North America

Published online by Cambridge University Press:  02 November 2021

Caleb M. Brown*
Affiliation:
Royal Tyrrell Museum of Palaeontology, P.O. Box 7500, Drumheller, Alberta T0J 0Y0, Canada. E-mail: [email protected]
Nicolás E. Campione
Affiliation:
Palaeoscience Research Centre, University of New England, Armidale, New South Wales 2351, Australia. E-mail: [email protected].
Gregory P. Wilson Mantilla
Affiliation:
Department of Biology, University of Washington, Life Sciences Building, Seattle, Washington 98195-1800, U.S.A., and Burke Museum, University of Washington, 4300 15th Avenue NE, Seattle, Washington 98195, U.S.A. E-mail: [email protected].
David C. Evans
Affiliation:
Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada, and Department of Natural History–Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada. E-mail: [email protected]
*
*Corresponding author.

Abstract

The end-Cretaceous (K/Pg) mass extinction event is the most recent and well-understood of the “big five” and triggered establishment of modern terrestrial ecosystem structure. Despite the depth of research into this event, our knowledge of upper Maastrichtian terrestrial deposits globally relies primarily on assemblage-level data limited to a few well-sampled formations in North America, the Hell Creek and Lance Formations. These assemblages disproportionally affect our interpretations of this important interval. Multiple investigations have quantified diversity patterns within these assemblages, but the potential effect of formation-level size-dependent taphonomic biases and their implications on extinction dynamics remains unexplored. Here, the relationship between taphonomy and body size of the Hell Creek Formation and Lance Formation dinosaurs and mammals are quantitatively analyzed. Small-bodied dinosaur taxa (<70 kg) are consistently less complete, unlikely to be articulated, and delayed in their description relative to their large-bodied counterparts. Family-level abundance (particularly skeletons) is strongly tied to body mass, and the relative abundance of juveniles of large-bodied taxa similarly is underrepresented. Mammals show similar but nonsignificant trends. The results are remarkably similar to those from the Campanian-aged Dinosaur Park Formation, suggesting a widespread strong taphonomic bias against the preservation of small taxa, which will result in their seemingly depauperate diversity within the assemblage. This taphonomically skewed view of diversity and abundance of small-bodied taxa amid our best late Maastrichtian samples has significant implications for understanding speciation and extinction dynamics (e.g., size-dependent extinction selectivity) across the K/Pg boundary.

Type
Featured Article
Copyright
Copyright © Royal Tyrrell Museum of Palaeontology and The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V.. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:10951108.CrossRefGoogle ScholarPubMed
Archibald, J. D. 1992. Dinosaur extinction: how much and how fast? Journal of Vertebrate Paleontology 12:263264.CrossRefGoogle Scholar
Archibald, J. D. 2011. Extinction and radiation: how the fall of dinosaurs led to the rise of mammals. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Archibald, J. D., and MacLeod, N.. 2007. Dinosaurs, extinction theories for. Pp. 19 in Levin, S. A., ed. Encyclopedia of biodiversity. Academic Press.Google Scholar
Archibald, J. D., Clemens, W. A., Padian, K., Rowe, T., Macleod, N., Barrett, P. M., Gale, A., Holroyd, P., Sues, H.-D., and Arens, N. C.. 2010. Cretaceous extinctions: multiple causes. Science 328:973973.CrossRefGoogle ScholarPubMed
Archibald, J. D., Zhang, Y., Harper, T., and Cifelli, R. L.. 2011. Protungulatum, confirmed Cretaceous occurrence of an otherwise Paleocene eutherian (placental?) mammal. Journal of Mammalian Evolution 18:153161.CrossRefGoogle Scholar
Arribas, A., and Palmqvist, P.. 1998. Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the lower Pleistocene site at Venta Micena (Orce, Guadix-Baza Basin, Granada, Spain). Geobios 31:347.CrossRefGoogle Scholar
Bakker, R. T., ed. 1977. Tetrapod mass extinctions—a model of the regulation of speciation rates and immigration by cycles of topographic diversity. Elsevier, New York.CrossRefGoogle Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C. R., McGuire, J. L., Lindsey, E. L., McGuire, K. C., Mersey, B., and Ferrer, E. A.. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471:5157.CrossRefGoogle ScholarPubMed
Barrett, P. M., McGowan, A. J., and Page, V.. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276:26672674.Google ScholarPubMed
Bazzi, M., Kear, B. P., Blom, H., Ahlberg, P. E., and Campione, N. E.. 2018. Static dental disparity and morphological turnover in sharks across the end-Cretaceous mass extinction. Current Biology 28:26072615.e3.CrossRefGoogle ScholarPubMed
Bebber, D. P., Marriott, F. H., Gaston, K. J., Harris, S. A., and Scotland, R. W.. 2007. Predicting unknown species numbers using discovery curves. Proceedings of the Royal Society of London B 274:16511658.Google ScholarPubMed
Behrensmeyer, A. K., and Dechant Boaz, D. E.. 1980. The recent bones of Amboseli Park, Kenya, in relation to East African paleoecology. Pp. 7293 in Behrensmeyer, A. K., and Dechant Boaz, D. E., eds. Fossils in the making: vertebrate taphonomy and paleoecology. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., Western, D., and Dechant Boaz, D. E.. 1979. New perspectives in vertebrate paleoecology from a Recent bone analysis. Paleobiology 5:1221.CrossRefGoogle Scholar
Benson, R. B. 2018. Dinosaur macroevolution and macroecology. Annual Review of Ecology, Evolution, and Systematics. 49:379408CrossRefGoogle Scholar
Benson, R. B., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P., and Evans, D. C.. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol 12(5):e1001853.CrossRefGoogle ScholarPubMed
Benson, R. B., Hunt, G., Carrano, M. T., and Campione, N.. 2018. Cope's rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61:1348.CrossRefGoogle Scholar
Benton, M. J. 1985. Mass extinctions among non-marine tetrapods. Nature 316:811814.CrossRefGoogle Scholar
Berv, J. S., and Field, D. J.. 2018. Genomic signature of an avian Lilliput effect across the K-Pg extinction. Systematic Biology 67:113.CrossRefGoogle ScholarPubMed
Blackburn, T. M., and Gaston, K. J.. 1994. Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution 9:471474.CrossRefGoogle ScholarPubMed
Blackburn, T. M., and Gaston, K. J.. 1996. Spatial patterns in the body sizes of bird species in the New World. Oikos 77:436446.CrossRefGoogle Scholar
Boyd, C. A., Brown, C. M., Scheetz, R. D., and Clarke, J. A.. 2009. Taxonomic revision of the basal neornithischian taxa Thescelosaurus and Bugenasaura. Journal of Vertebrate Paleontology 29:758770.CrossRefGoogle Scholar
Brand, L. R., Hussey, M., and Taylor, J.. 2003a. Decay and disarticulation of small vertebrates in controlled experiments. Journal of Taphonomy 1:6995.Google Scholar
Brand, L. R., Hussey, M., and Taylor, J.. 2003b. Taphonomy of freshwater turtles: decay and disarticulation in controlled experiments. Journal of Taphonomy 1:233245.Google Scholar
Brown, C. M., Campione, N. E., Giacomini, H. C., O'Brien, L. J., Vavrek, M. J., and Evans, D. C.. 2013a. Ecological modelling, size distributions and taphonomic size bias in dinosaur faunas: a comment on Codron et al.(2012). Biology Letters 9:20120582.CrossRefGoogle Scholar
Brown, C. M., Evans, D. C., Campione, N. E., O'Brien, L. J., and Eberth, D. A.. 2013b. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeography, Palaeoclimatology, Palaeontology 372:108122.CrossRefGoogle Scholar
Brown, C. M., Russell, A. P., Evans, D. C., and Ryan, M. J.. 2013c. New data on the diversity and abundance of small-bodied ornithopods (Dinosauria: Ornithischia) from the Belly River Group (Campanian) of Alberta. Journal of Vertebrate Paleontology 33:495520.CrossRefGoogle Scholar
Brusatte, S. L., Butler, R. J., Barrett, P. M., Carrano, M. T., Evans, D. C., Lloyd, G. T., Mannion, P. D., Norell, M. A., Peppe, D. J., Upchurch, P., and Williamson, T. E.. 2015. The extinction of the dinosaurs. Biological Reviews 90:628642.CrossRefGoogle ScholarPubMed
Brusatte, S. L., Carr, T. D., Williamson, T. E., Holtz, T. R. Jr., Hone, D. W., and Williams, S. A.. 2016. Dentary groove morphology does not distinguish “Nanotyrannus” as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988.” Cretaceous Research 65:232237.CrossRefGoogle Scholar
Bryant, L. J. 1989. Non-dinosaurian Lower Vertebrates across the Cretaceous–Tertiary Boundary in Northeastern Montana. University of California Publications, Geological Science No. 134. University of California Press. Berkeley.Google Scholar
Buffetaut, E. 1990. Vertebrate extinctions and survival across the Cretaceous–Tertiary boundary. Tectonophysics 171:337345.CrossRefGoogle Scholar
Buffetaut, E. 2004. Polar dinosaurs and the question of dinosaur extinction: a brief review. Palaeogeography Palaeoclimatology Palaeoecology 214:225231.CrossRefGoogle Scholar
Buffetaut, E. 2006. Continental vertebrate extinctions at the Triassic–Jurassic and Cretaceous–Tertiary boundaries: a comparison. Pp. 245256 in Cockell, C., Koeberl, C., and Gilmour, I., eds. Biological processes associated with impact events. Springer, Stürtz, GermanyCrossRefGoogle Scholar
Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D., and Upchurch, P.. 2011. Sea level, dinosaur diversity and sampling biases: investigating the “common cause” hypothesis in the terrestrial realm. Proceedings of the Royal Society of London B 278:11651170.Google ScholarPubMed
Campione, N. E., and Evans, D. C.. 2011. Cranial growth and variation in Edmontosaurs (Dinosauria: Hadrosauridae): implications for latest Cretaceous megaherbivore diversity in North America. PLoS ONE 6(9):e25186.CrossRefGoogle ScholarPubMed
Campione, N. E., and Evans, D. C.. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10:60.CrossRefGoogle ScholarPubMed
Campione, N. E., Evans, D. C., Brown, C. M., and Carrano, M.. 2014. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods in Ecology and Evolution 5:913923.CrossRefGoogle Scholar
Carbone, C., Turvey, S. T., and Bielby, J.. 2011. Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proceedings of the Royal Society of London B 278:26822690.Google ScholarPubMed
Cardillo, M., and Bromham, L.. 2001. Body size and risk of extinction in Australian mammals. Conservation Biology 15:14351440.CrossRefGoogle Scholar
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R., Sechrest, W., Orme, C. D. L., and Purvis, A.. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:12391241.CrossRefGoogle ScholarPubMed
Cashmore, D. D., and Butler, R. J.. 2019. Skeletal completeness of the non-avian theropod dinosaur fossil record. Palaeontology 62:951981.CrossRefGoogle Scholar
Chiarenza, A. A., Mannion, P. D., Lunt, D. J., Farnsworth, A., Jones, L. A., Kelland, S.-J., and Allison, P. A.. 2019. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nature Communications 10:114.CrossRefGoogle Scholar
Chiarenza, A. A., Farnsworth, A., Mannion, P. D., Lunt, D. J., Valdes, P. J., Morgan, J. V., and Allison, P. A.. 2020. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences USA 117:1708417093.CrossRefGoogle Scholar
Clauset, A., and Erwin, D. H.. 2008. The evolution and distribution of species body size. Science 321:399401.CrossRefGoogle ScholarPubMed
Cleary, T. J., Benson, R. B., Evans, S. E., and Barrett, P. M.. 2018. Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers. Royal Society Open Science 5(3):171830.CrossRefGoogle ScholarPubMed
Clemens, W. A. 1992. Dinosaur diversity and extinction. Science 256:159.CrossRefGoogle ScholarPubMed
Clemens, W. A., Archibald, J. D., and Hickey, L. J.. 1981. Out with a whimper not a bang. Paleobiology 7:293298.CrossRefGoogle Scholar
Close, R. A., Evers, S. W., Alroy, J., and Butler, R. J.. 2018. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods in Ecology and Evolution 9:13861400.CrossRefGoogle Scholar
Codron, D., Carbone, C., Müller, D. W. H., and Clauss, M.. 2012. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates. Biology Letters 8:620623.CrossRefGoogle ScholarPubMed
Codron, D., Carbone, C., Muller, D. W. H., and Clauss, M.. 2013. Ecological modelling, size distributions and taphonomic size bias in dinosaur faunas: reply to Brown et al. Biology Letters 9:20120922CrossRefGoogle ScholarPubMed
Cope, E. D. 1883. On the characters of the skull in the Hadrosauridae. Proceedings of the Academy of Natural Science 35:97107.Google Scholar
Currie, P. J., and Evans, D. C.. 2020. Cranial anatomy of new specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta. Anatomical Record 303:691715.CrossRefGoogle ScholarPubMed
Darroch, S. A. F., Fraser, D., and Casey, M. M.. 2021. The preservation potential of terrestrial biogeographic patterns. Proceedings of the Royal Society of London B 288:20202927.Google ScholarPubMed
DeBey, L. B., and Wilson, G. P.. 2014. Mammalian femora across the Cretaceous–Paleogene boundary in eastern Montana. Cretaceous Research 51:361385.CrossRefGoogle Scholar
DeBey, L. B., and Wilson, G. P.. 2017. Mammalian distal humerus fossils from eastern Montana, USA with implications for the Cretaceous–Paleogene mass extinction and the adaptive radiation of placentals. Palaeontologia Electronica 20(3):49A.Google Scholar
DePalma, R. A., Smit, J., Burnham, D. A., Kuiper, K., Manning, P. L., Oleinik, A., Larson, P., Maurrasse, F. J., Vellekoop, J., Richards, M. A., Gurche, L., and Alvarez, W.. 2019. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Sciences USA 116:81908199.CrossRefGoogle ScholarPubMed
Eberth, D. A., and Currie, P. J.. 2005. Vertebrate taphonomy and taphonomic modes. Pp. 453477 in Currie, P. J., and Koppelhus, E. B., eds. Dinosaur Provincial Park: a spectacular ancient ecosystem revealed. Indiana University Press, Bloomington.Google Scholar
Estes, R., and Berberian, P.. 1970. Paleoecology of a Late Cretaceous vertebrate community from Montana. Breviora 343:135.Google Scholar
Estes, R., Berberian, P., and Meszoely, C. A.. 1969. Lower vertebrates from the Late Cretaceous Hell Creek Formation, McCone County, Montana. Breviora 337:133.Google Scholar
Evans, D. C., Schott, R. K., Larson, D. W., Brown, C. M., and Ryan, M. J.. 2013. The oldest North American pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs. Nature Communications 4:1828CrossRefGoogle ScholarPubMed
Farke, A. A. 2011. Anatomy and taxonomic status of the chasmosaurine ceratopsid Nedoceratops hatcheri from the Upper Cretaceous Lance Formation of Wyoming, USA. PLoS ONE 6(1):e16196.CrossRefGoogle Scholar
Farlow, J. O. 1993. On the rareness of big, fierce animals: speculations about the body sizes, population densities, and geographic ranges of predatory mammals and large carnivorous dinosaurs. American Journal of Science 293(A):167199.CrossRefGoogle Scholar
Farlow, J. O., Dodson, P., and Chinsamy, A.. 1995. Dinosaur biology. Annual Review of Ecology and Systematics 26:445471.CrossRefGoogle Scholar
Fastovsky, D. E., and Bercovici, A.. 2016. The Hell Creek Formation and its contribution to the Cretaceous–Paleogene extinction: a short primer. Cretaceous Research 57:368390.CrossRefGoogle Scholar
Fastovsky, D. E., and Sheehan, P. M.. 2005. The extinction of dinosaurs in North America. GSA Today 15(3):410.2.0.CO;2>CrossRefGoogle Scholar
Fastovsky, D. E., and Weishampel, D. B.. 2005. The evolution and extinction of the dinosaurs. Cambridge University Press, Cambridge.Google Scholar
Field, D. J., Lynner, C., Brown, C., and Darroch, S. A.. 2013. Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS ONE 8(11):e82000.CrossRefGoogle ScholarPubMed
Forster, C. A. 1996. Species resolution in Triceratops: cladistic and morphometric approaches. Journal of Vertebrate Paleontology 16:259270.CrossRefGoogle Scholar
Galbreath, G. T. 1988. Arctic dinosaurs and terminal Cretaceous extinctions. Science 239:1011.CrossRefGoogle ScholarPubMed
García-Girón, J., Heino, J., Alahuhta, J., Chiarenza, A. A., and Brusatte, S. L.. 2021. Palaeontology meets metacommunity ecology: the Maastrichtian dinosaur fossil record of North America as a case study. Palaeontology 64:335357.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M.. 1995. Birds, body size and the threat of extinction. Philosophical Transactions of the Royal Society of London B 347:205212.Google Scholar
Gilmore, C. W. 1910. Leidyosuchus sternbergii, a new species of crocodile from the Ceratops Beds of Wyoming. Proceedings of the United States National Museum 38:485502.CrossRefGoogle Scholar
Gilmore, C. W. 1911. A new fossil alligator from the Hell Creek beds of Montana. Proceedings of the United States National Museum 41:297301.CrossRefGoogle Scholar
Goodwin, M. B., and Evans, D. C.. 2016. The early expression of squamosal horns and parietal ornamentation confirmed by new end-stage juvenile Pachycephalosaurus fossils from the Upper Cretaceous Hell Creek Formation, Montana. Journal of Vertebrate Paleontology 36:e1078343.CrossRefGoogle Scholar
Goodwin, M. B., and Horner, J. R.. 2010. Historical collecting bias and the fossil record of Triceratops in Montana. Pp. 551563 in Ryan, M., Chinnery-Algeier, B. J., and Eberth, D. A., eds. New perspectives on horned dinosaurs: the Royal Tyrrell Museum Ceratopsian Symposium. Indiana University Press, Bloomington.Google Scholar
Halliday, T. J. D., Upchurch, P., and Goswami, A.. 2016. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction. Proceedings of the Royal Society of London B 283:20153026.Google ScholarPubMed
Holroyd, P. A., and Hutchison, J. H.. 2002. Patterns of geographic variation in latest Cretaceous vertebrates: evidence from the turtle component. Geological Society of America Special Paper 361:177190.Google Scholar
Holroyd, P. A., Wilson, G. P., and Hutchison, J. H.. 2014. Temporal changes within the latest Cretaceous and early Paleogene turtle faunas of northeastern Montana. Geological Society of America Special Paper 503:299312.Google Scholar
Horner, J. R., and Goodwin, M. B.. 2006. Major cranial changes during Triceratops ontongeny. Proceedings of the Royal Society of London B 273:27572761.Google Scholar
Horner, J. R., and Goodwin, M. B.. 2008. Ontogeny of cranial epi-ossifications in Triceratops. Journal of Vertebrate Paleontology 28:134144.CrossRefGoogle Scholar
Horner, J. R., and Goodwin, M. B.. 2009. Extreme cranial ontogeny in the Upper Cretaceous dinosaur Pachycephalosaurus. PLoS ONE 4(10):e7626.CrossRefGoogle ScholarPubMed
Horner, J. R., Goodwin, M. B., and Myhrvold, N.. 2011. Dinosaur census reveals abundant Tyrannosaurus and rare ontogenetic stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA. PLoS ONE 6(2):e16574.CrossRefGoogle ScholarPubMed
Hutchison, J. H., and Archibald, J. D.. 1986. Diversity of turtles across the Cretaceous/Tertiary boundary in northeastern Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 55:122.CrossRefGoogle Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289 in Jablonski, D., Erwin, D., and Lipps, J., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Kelley, D., Richards, C., and Layton, C.. 2016. oce: analysis of oceanographic data, R package version 1.2–0. https://cran.r-project.org/web/packages/oce/index.html, accessed February 2020.Google Scholar
Kidwell, S. M., and Flessa, K. W.. 1996. The quality of the fossil record: populations, species, and communities. Annual Review of Earth and Planetary Science 24:433464.CrossRefGoogle Scholar
Krassilov, V. A. 1981. Changes of Mesozoic vegetation and the extinction of dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 34:207224.CrossRefGoogle Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W.. 2009. Signature of the end-Cretaceous mass extinction in the modern biota. Science 323:767771.CrossRefGoogle ScholarPubMed
Larson, D. W., Brown, C. M., and Evans, D. C.. 2016. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Current Biology 26:13251333.CrossRefGoogle Scholar
Larson, P. 2008. Variation and sexual dimorphism in Tyrannosaurus rex. Pp. 102128 in Larson, P., and Carpenter, K., eds. Tyrannosaurus rex, the tyrant king. Indiana University Press, Bloomington.Google Scholar
Larson, P. 2013. The case for Nanotyrannus. Pp. 1553 in Parrish, J. M., Molnar, R. E., Currie, P. J., and Koppelhus, E. B., eds. Tyrannosaurid paleobiology. Indiana University Press, Bloomington.Google Scholar
Lehman, T. M. 1987. Late Maastrichtian paleoenvironments and dinosaur biogeography in the western interior of North America. Palaeogeography, Palaeoclimatology, Palaeontology 60:187217.Google Scholar
Lehman, T. M. 2001. Late Cretaceous dinosaur provinciality. Pp. 310328 in Tanke, D. H., Carpenter, K., and Skrepnick, M. W., eds. Mesozoic vertebrate life. Indiana University Press, Bloomington.Google Scholar
Lloyd, G. T. 2011. A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. Biology Letters 8:123126CrossRefGoogle ScholarPubMed
Longrich, N., Scriberas, J., and Wills, M.. 2016. Severe extinction and rapid recovery of mammals across the Cretaceous–Palaeogene boundary, and the effects of rarity on patterns of extinction and recovery. Journal of Evolutionary Biology 29:14951512.CrossRefGoogle ScholarPubMed
Longrich, N. R. 2014. The horned dinosaurs Pentaceratops and Kosmoceratops from the upper Campanian of Alberta and implications for dinosaur biogeography. Cretaceous Research 51:292308.CrossRefGoogle Scholar
Longrich, N. R., and Field, D. J.. 2012. Torosaurus is not Triceratops: ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy. PLoS ONE 7(2):e32623.CrossRefGoogle Scholar
Longrich, N. R., Tokaryk, T., and Field, D. J.. 2011. Mass extinction of birds at the Cretaceous, Paleogene (K, Pg) boundary. Proceedings of the National Academy of Sciences USA 108:1525315257.CrossRefGoogle ScholarPubMed
Longrich, N. R., Bhullar, B.-A. S., and Gauthier, J. A.. 2012. Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences USA 109:2139621401.CrossRefGoogle ScholarPubMed
Lucas, S. G., Sullivan, R. M., Lichtig, A. J., Dalman, S. G., and Jasinski, S. E.. 2016. Late Cretaceous dinosaur biogeography and endemism in the Western Interior Basin, North America: a critical re-evaluation. New Mexico Museum of Natural History and Science Bulletin 71:195213.Google Scholar
Lyman, R. L. 1984. Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology 3:259299.CrossRefGoogle Scholar
Lyson, R. T., and Longrich, N. R.. 2011. Spatial niche partitioning in dinosaurs from the latest Cretaceous (Maastrichtian) of North America. Proceedings of the Royal Society of London B 278:11581164.Google ScholarPubMed
Lyson, T., Miller, I., Bercovici, A., Weissenburger, K., Fuentes, A., Clyde, W., Hagadorn, J., Butrim, M., Johnson, K., and Fleming, R.. 2019. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366:977983.CrossRefGoogle ScholarPubMed
Lyson, T. R., Bercovici, A., Chester, S. G. B., Sargis, E. J., Pearson, D., and Joyce, W. G.. 2011. Dinosaur extinction: closing the “3 m gap.” Biology Letters 7:925928.CrossRefGoogle Scholar
Mannion, P. D., and Upchurch, P.. 2010. Completeness metrics and the quality of the sauropodomorph fossil record through geological and historical time. Paleobiology 36:283302.CrossRefGoogle Scholar
Marsh, O. C. 1892. Notes on Mesozoic vertebrate fossils. American Journal of Science 3:171176.CrossRefGoogle Scholar
Mitchell, J. S. 2015. Preservation is predictable: quantifying the effect of taphonomic biases on ecological disparity in birds. Paleobiology 41:353367.CrossRefGoogle Scholar
Mitchell, J. S., Roopnarine, P. D., and Angielczyk, K. D.. 2012. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proceedings of the National Academy of Sciences USA 109:1885718861.CrossRefGoogle ScholarPubMed
Noto, C. R. 2011. Hierarchical control of terrestrial vertebrate taphonomy over space and time: discussion of mechanisms and implications for vertebrate paleobiology. Pp. 287336 in Allison, P. A. and Bottjer, D. J., eds. Taphonomy. Aims and Scope Topics in Geobiology, Vol 32. Springer, Dordrecht.Google Scholar
Novacek, M. J. 1999. 100 million years of land vertebrate evolution: the Cretaceous–early Tertiary transition. Annals of the Missouri Botanical Garden 86:230258.CrossRefGoogle Scholar
Novacek, M. J., and Cleland, E. E.. 2001. The current biodiversity extinction event: scenarios for mitigation and recovery. Proceedings of the National Academy of Sciences USA 98:54665470.CrossRefGoogle ScholarPubMed
O'Gorman, E. J., and Hone, D. W. E.. 2013. Body size distribution of the dinosaurs. PLoS ONE 7(12):e51925.CrossRefGoogle Scholar
Olden, J. D., Hogan, Z. S., and Zanden, M. J. V.. 2007. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. Global Ecology and Biogeography 16:694701.CrossRefGoogle Scholar
Ott, C. J., and Larson, P. L.. 2010. A new, small ceratopsian dinosaur from the latest Cretaceous Hell Creek Formation, northwest South Dakota, United States: a preliminary description. Pp. 203218 in Ryan, M. J., Chinnery-Allgeier, B. J., and Eberth, D. A., eds. New perspectives on horned dinosaurs. Indiana University Press, Bloomington.Google Scholar
Payne, J. L., and Heim, N. A.. 2020. Body size, sampling completeness, and extinction risk in the marine fossil record. Paleobiology 46:2340.CrossRefGoogle Scholar
Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L., and McCauley, D. J.. 2016. Ecological selectivity of the emerging mass extinction in the oceans. Science 353:12841286.CrossRefGoogle ScholarPubMed
Pearson, D. A., Schaefer, T., Johnson, K. R., Nichols, D. J., and Hunter, J. P.. 2002. Vertebrate biostratigraphy of the Hell Creek formation in southwestern North Dakota and northwestern South Dakota. Geological Society of America Special Paper 361:145167.Google Scholar
Peczkis, J. 1994. Implications of body-mass estimates for dinosaurs. Journal of Vertebrate Paleontology 14:520533.CrossRefGoogle Scholar
Raup, D. M. 1986. Biological extinction in earth history. Science 231:15281533.CrossRefGoogle ScholarPubMed
R Core Team. 2009. R: a language and environment for statistical computing, Version 2.10.0. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Richmond, N. D. 1965. Perhaps juvenile dinosaurs were always scarce. Journal of Paleontology 39:503505.Google Scholar
Russell, D. A. 1977. The biotic crisis at the end of the Cretaceous period: Cretaceous–Tertiary extinctions and possible terrestrial and extraterrestrial causes. Syllogeus—National Museum of Natural Sciences 12:1123.Google Scholar
Russell, D. A., and Manabe, M.. 2002. Synopsis of the Hell Creek (uppermost Cretaceous) dinosaur assemblage. The Hell Creek Formation and the Cretaceous–Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361:169176.Google Scholar
Ryan, M. J., Evans, D. C., Currie, P. J., and Loewen, M. A.. 2014. A new chasmosaurine from northern Laramidia expands frill disparity in ceratopsid dinosaurs. Naturwissenschaften 101:505512.CrossRefGoogle ScholarPubMed
Scannella, J. B., and Horner, J. R.. 2010. Torosaurus Marsh, 1891, is Triceratops Marsh, 1889 (Ceratopsidae: Chasmosaurinae): synonymy through ontogeny. Journal of Vertebrate Paleontology 30:11571168.CrossRefGoogle Scholar
Scannella, J. B., and Horner, J. R.. 2011. Nedoceratops”: an example of a transitional morphology. PLoS ONE 6(12):e28705.CrossRefGoogle ScholarPubMed
Scannella, J. B., Fowler, D. W., Goodwin, M. B., and Horner, J. R.. 2014. Evolutionary trends in Triceratops from the Hell Creek Formation, Montana. Proceedings of the National Academy of Sciences USA 111:1024510250.CrossRefGoogle ScholarPubMed
Schmerge, J. D., and Rothschild, B. M.. 2016. Distribution of the dentary groove of theropod dinosaurs: implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretaceous Research 61:2633.CrossRefGoogle Scholar
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., and Khadri, S. F. R.. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363:862866.CrossRefGoogle ScholarPubMed
Schroeder, K., Lyons, S. K., and Smith, F. A.. 2021. The influence of juvenile dinosaurs on community structure and diversity. Science 371:941944.CrossRefGoogle ScholarPubMed
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., and Cockell, C. S.. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327:12141218.CrossRefGoogle ScholarPubMed
Serrano, F. J., Palmqvist, P., and Sanz, J. L.. 2015. Multivariate analysis of neognath skeletal measurements: implications for body mass estimation in Mesozoic birds. Zoological Journal of the Linnean Society 173:929955.CrossRefGoogle Scholar
Sheehan, P. M., and Fastovsky, D. E.. 1992. Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20:556560.2.3.CO;2>CrossRefGoogle Scholar
Sheehan, P. M., Fastovsky, D. E., Hoffmann, R. G., Berghaus, C. B., and Gabriel, D. L.. 1991. Sudden extinction of the dinosaurs: latest Cretaceous, Upper Great Plains, U.S.A. Science 254:835839.CrossRefGoogle Scholar
Sheehan, P. M., Fastovsky, D. E., Barreto, C., and Hoffmann, R. G.. 2000. Dinosaur abundance was not declining in a “3 m gap” at the top of the Hell Creek Formation, Montana and North Dakota. Geology 28:523526.2.0.CO;2>CrossRefGoogle Scholar
Sloan, R. E. 1976. The ecology of dinosaur extinction. Pp. 134155 in Churcher, C. S., ed. Athlon: essays on palaeontology in honour of Loris Shano Russell. University of Toronto Press, Toronto.Google Scholar
Sloan, R. E., Rigby, J., Keith, J., Van Valen, L. M., and Gabriel, D.. 1986. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science 232:629633.CrossRefGoogle ScholarPubMed
Smith, A. B., and McGowan, A. J.. 2011. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. Geological Society of London Special Publication 358:17.CrossRefGoogle Scholar
Soberón, J. M., and Llorente, J. B.. 1993. The use of species accumulation functions for the prediction of species richness. Conservation Biology 7:480488.CrossRefGoogle Scholar
Solow, A. R., and Smith, W. K.. 2005. On estimating the number of species from the discovery record. Proceedings of the Royal Society of London B 272:285287.Google ScholarPubMed
Sprain, C. J., Renne, P. R., Wilson, G. P., and Clemens, W. A.. 2015. High-resolution chronostratigraphy of the terrestrial Cretaceous–Paleogene transition and recovery interval in the Hell Creek region, Montana. Geological Society of America Bulletin 127:393409.CrossRefGoogle Scholar
Starrfelt, J., and Liow, L. H.. 2016. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philosophical Transactions of the Royal Society of London B 371:20150219.CrossRefGoogle ScholarPubMed
Stein, W. W. 2019. Taking count: a census of dinosaur fossils recovered from the Hell Creek and Lance Formations (Maastrichtian). Journal of Paleontological Sciences 8:142.Google Scholar
Steyskal, G. C. 1965. Trend curves of the rate of species description in zoology. Science:880882.CrossRefGoogle ScholarPubMed
Tennant, J. P., Chiarenza, A. A., and Baron, M.. 2018. How has our knowledge of dinosaur diversity through geologic time changed through research history? PeerJ 6:e4417.CrossRefGoogle ScholarPubMed
Tobin, T. S., Wilson, G. P., Eiler, J. M., and Hartman, J. H.. 2014. Environmental change across a terrestrial Cretaceous–Paleogene boundary section in eastern Montana, USA, constrained by carbonate clumped isotope paleothermometry. Geology 42:351354.CrossRefGoogle Scholar
Turvey, S. T., and Blackburn, T. M.. 2011. Determinants of species abundance in the Quaternary vertebrate fossil record. Paleobiology 37:537546.CrossRefGoogle Scholar
Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J., and Carrano, M. T.. 2011. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geological Society of London Special Publication 358:209240.CrossRefGoogle Scholar
Valiente-Banuet, A., Aizen, M., Alcántara, J., Arroyo, J., Cocucci, A., Galetti, M., García, M., García, D., Gómez, J., and Jordano, P.. 2015. Beyond species loss: extinction of interactions in a changing world. Functional Ecology 29:299307.CrossRefGoogle Scholar
Varricchio, D. J. 2011. A distinct dinosaur life history? Historical Biology 23:91107.CrossRefGoogle Scholar
Vavrek, M. J., and Larsson, H. C. E.. 2010. Low beta diversity of Maastrichtian dinosaurs of North America. Proceedings of the National Academy of Science USA 107:82658268.CrossRefGoogle ScholarPubMed
Wang, S. C., and Dodson, P.. 2006. Estimating the diversity of dinosaurs. Proceedings of the National Academy of Science USA 103:1360113605.CrossRefGoogle ScholarPubMed
White, P. D., Fastovsky, D. E., and Sheehan, P. M.. 1998. Taphonomy and suggested structure of the dinosaurian assemblage of the Hell Creek Formation (Maastrichtian), eastern Montana and western North Dakota. Palaios 13:4151.CrossRefGoogle Scholar
Williams, J. W., and Jackson, S. T.. 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5:475482.CrossRefGoogle Scholar
Wilson, G. P. 2005. Mammalian faunal dynamics during the last 1.8 million years of the Cretaceous in Garfield County, Montana. Journal of Mammalian Evolution 12:5376.CrossRefGoogle Scholar
Wilson, G. P. 2013. Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology 39:429469.CrossRefGoogle Scholar
Wilson, G. P. 2014. Mammalian extinction, survival, and recovery dynamics across the Cretaceous–Paleogene boundary in northeastern Montana, USA. Geological Society of America Special Paper 503:365392.Google Scholar
Wilson, G. P., Clemens, W. A., Horner, J. R., and Hartman, J. H.. 2014a. Through the end of the Cretaceous in the type locality of the Hell Creek Formation in Montana and adjacent areas. Geological Society of America Special Paper 503.Google Scholar
Wilson, G. P., DeMar, D. G. Jr., and Carter, G.. 2014b. Extinction and survival of salamander and salamander-like amphibians across the Cretaceous–Paleogene boundary in northeastern Montana, USA. Geological Society of America Special Paper 503:271297.Google Scholar
Wilson, G. P., Ekdale, E. G., Hoganson, J. W., Calede, J. J., and Vander Linden, A.. 2016. A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials. Nature Communications 7:110.CrossRefGoogle ScholarPubMed
Wilson, L. E. 2008. Comparative taphonomy and paleoecological reconstruction of two microvertebrate accumulations from the Late Cretaceous Hell Creek Formation (Maastrichtian), eastern Montana. Palaios 23:289297.CrossRefGoogle Scholar
Woodward, H. N., Tremaine, K., Williams, S. A., Zanno, L. E., Horner, J. R., and Myhrvold, N.. 2020. Growing up Tyrannosaurus rex: osteohistology refutes the pygmy “Nanotyrannus“ and supports ontogenetic niche partitioning in juvenile Tyrannosaurus. Science Advances 6(1):eaax6250.CrossRefGoogle ScholarPubMed
Wosik, M., Goodwin, M. B., and Evans, D. C.. 2017. A nestling-sized skeleton of Edmontosaurus (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana, USA, with an analysis of ontogenetic limb allometry. Journal of Vertebrate Paleontology 37(6):e1398168.CrossRefGoogle Scholar
Zhou, Z. 2014. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: new discoveries and implications. National Science Review 1:543559.CrossRefGoogle Scholar
Supplementary material: Link

Brown et al. Dataset

Link