Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T01:52:13.378Z Has data issue: false hasContentIssue false

Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria

Published online by Cambridge University Press:  08 April 2016

David Boal
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada. E-mail: [email protected]
Ray Ng
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada. E-mail: [email protected]

Abstract

Variations in the orientation and cross-sectional shape of filamentous microfossils provide quantitative measures for characterizing them and probing their native mechanical structure. Here, we determine the tangent correlation length, which is the characteristic length scale for the variation in direction of a sinuous curve, for both a suite of Precambrian filamentous microfossils and six strains of modern filamentous cyanobacteria, all with diameters of a few microns. Among 1.9-2-Ga microfossils, Gunflintia grandis, Gunflintia minuta and Eomycetopsis filiformis possess, respectively, correlation lengths of 360 ± 40 μm, 670 ± 40 μm and 700 ±100 μm in two dimensions. Hundreds of times larger than the filament diameters, these values lie in the same range as the cyanobacteria Geitlerinema and Pseudanabaena, but are smaller than several strains of Oscillatoria. In contrast, the 2-Ga microfossil trichome Halythrix, is found to have a short correlation length of 29 ± 4 μm in two dimensions. Micron-wide pyritic replacement filaments observed in 3.23-Ga volcanogenic deposits also display a modest correlation length of 100 ± 15 μm in two dimensions. Sequences of species in two genera of our modern cyanobacteria possess tangent correlation lengths that rise as a power of the filament diameter DD3.3 ± 1 for Oscillatoria and D5.1 ± 1 for Geitlerinema. These results can be compared with power-law scaling of D3 for hollow tubes and D4 for solid cylinders that is expected from continuum mechanics. Extrapolating the observed scaling behavior to smaller filament diameters, the measured correlation length of the pyrite filaments is consistent with modern Geitlerinema whereas that of Halythrix lies not far from modern Oscillatoria, suggesting that there may be structural similarities among these genera.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Atlas, R. M. 2004. Handbook of microbiological media. CRC Press, Boca Raton, Fla. Google Scholar
Awramik, S. M., and Barghoorn, E. S. 1977. Gunflint microbiota. Precambrian Research 5:121142.CrossRefGoogle Scholar
Barghoorn, E. S., and Schopf, J. W. 1966. Microorganisms three billion years old from the Precambrian of South Africa. Science 152:758763.Google Scholar
Barghoorn, E. S., and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science 147:563577.CrossRefGoogle ScholarPubMed
Boal, D. H. 2002. Mechanics of the cell. Cambridge University Press, Cambridge.Google Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V. 2002. Questioning the evidence for Earth's oldest fossils. Nature 416:7681.Google Scholar
Buick, R., Brauhart, C. W., Morant, P., Thornett, J. R., Maniw, J. G., Archibald, N. J., Doepel, M. G., Fletcher, I. R., Pickard, A. L., Smith, J. B., Barley, M. E., McNaughton, N. J., and Groves, D. I. 2002. Geochronology and stratigraphic relationships of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia. Precambrian Research 114:87120.CrossRefGoogle Scholar
Cloud, P. E. Jr. 1965. Significance of the Gunflint (Precambrian) microflora. Science 148:2735.Google Scholar
Fralick, P., Davis, D. W., and Kissin, S. A. 2002. The age of the Gunflint Formation, Ontario, Canada: single zircon U-Pb age determinations from reworked volcanic ash. Canadian Journal of Earth Sciences 39:10851091.CrossRefGoogle Scholar
Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H., and de Wit, M. 2004. Early life recorded in Archean pillow lavas. Science 304:578581.Google Scholar
Golubic, S., and Hofmann, H. J. 1976. Comparison of modern and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. Journal of Paleontology 50:10741082.Google Scholar
Hofmann, H. J. 1975. Stratiform, Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure. American Journal of Science 275:11211132.CrossRefGoogle Scholar
Hofmann, H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. Journal of Paleontology 50:10401073.Google Scholar
Knoll, A. H., and Barghoorn, E. S. 1974. Ambient pyrite in Precambrian chert: new evidence and a theory. Proceedings of the National Academy of Sciences USA 71:23292331.Google Scholar
Knoll, A. H., Barghoorn, E. S., and Awramik, S. M. 1978. New microorganisms from the Aphebian Gunflint Iron Formation, Ontario. Journal of Paleontology 52:976992.Google Scholar
Rasmussen, B. 2000. Filamentous microfossils in a 3.235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676679.Google Scholar
Rippka, R. 1988. Isolation and purification of cyanobacteria. Methods in Enzymology 167:327.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology 42:651688.Google Scholar
Schopf, J. W. 1993. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640646.CrossRefGoogle ScholarPubMed
Schopf, J. W., and Packer, B. M. 1987. Early Archean (3.3-billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:7073.Google Scholar
Tyler, S. A., and Barghoorn, E. S. 1963. Ambient pyrite grains in Precambrian cherts. American Journal of Science 261:424432.Google Scholar
Vearncombe, S., Barley, M. E., Groves, D. I., McNaughton, N. J., Mikucki, E. J., and Vearncombe, J. R. 1995. 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia. Journal of the Geological Society, London 152:587590.Google Scholar
Walsh, M. M., and Lowe, D. R. 1985. Filamentous microfossils from the 3,500Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314:530532.Google Scholar