Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T19:08:51.218Z Has data issue: false hasContentIssue false

Sexual shape dimorphism and selection pressure on males in fossil ostracodes

Published online by Cambridge University Press:  22 May 2017

Tatsuhiko Yamaguchi
Affiliation:
Center for Advanced Marine Core Research, Kochi University, Monobe B200, Nankoku, Kochi, 783-8502, Japan. E-mail: [email protected]
Rie Honda
Affiliation:
Department of Applied Science, Kochi University, 2-5-1 Akebono-cho, Kochi, Kochi, 780-8520, Japan
Hiroki Matsui
Affiliation:
Department of Earth Science, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
Hiroshi Nishi
Affiliation:
Tohoku University Museum, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan

Abstract

Sexual dimorphism is thought to have evolved via selection on both sexes. Ostracodes display sexual shape dimorphism in adult valves; however, no previous studies have addressed temporal changes on evolutionary timescales or examined the relationships between sexual shape dimorphism and selection pressure and between sexual shape dimorphism and juvenile shape. Temporal changes in sexually dimorphic traits result from responses of these traits to selection pressure. Using the Gaussian mixture model for the height/length ratio, a valve-shape parameter, we identified sexual differences in the valve shape of Krithe dolichodeira s.l. from deep-sea sediments of the Paleocene (62.6–57.6 Ma) and estimated the proportion of females in the fossil populations at 11 time intervals. Because the proportion of females in a population is altered by the mortality rate of adult males, it is reflective of selection pressure on males. We attempted to correlate the height/length ratios between the sexes with the proportion of females, taking into consideration that the valve shape was not linked with the selection pressure on males. In time-series data of the height/length ratio, both sexes indicate no significant changes on evolutionary timescales, even though the sex ratio of the population changed from female skewed to male skewed during the late Paleocene. The sexual shape dimorphism was not driven by sexual selection. The static allometry between the height/length ratio and length indicates that the sexual shape dimorphism did not function for sexual display. The absence of change over time in the female allometric slope suggests that the evolution of valve shape was constrained by stasis.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abe, K. 1983. Population structure of Keijella bisanensis (Okubo) (Ostracoda, Crustacea)—an inquiry into how far the population structure will be preserved in the fossil record. Journal of the Faculty of Science, the University of Tokyo, Section II 20:443488.Google Scholar
Abe, K. 1990. What the sex ratios tells us: a case from marine ostracods. Pp. 175185 in R. Whatley, and C. Maybury, eds. Ostracoda and global events. Chapman and Hall, London.CrossRefGoogle Scholar
Anderson, D. R., Burnham, K. P., and Thompson, W. L.. 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64:912923.CrossRefGoogle Scholar
Athersuch, J., Horne, D. J., and Whittaker, J. E.. 1989. Marine and brackish water ostracods (superfamilies Cypridacea and Cytheracea): key and notes for the identification of the species. Linnean Society of London and the Estuarine and Brackish-water Sciences Association, Avon, U.K. 343 p.Google Scholar
Ayress, M., Barrows, T., Passlow, V., and Whatley, R.. 1999. Neogene to Recent species of Krithe (Crustacea: Ostracoda) from the Tasman Sea and off Southern Australia with description of five new species. Records of the Australian Museum 51:122.CrossRefGoogle Scholar
Badyaev, A. V., and Martin, T. E.. 2000. Sexual dimorphism in relation to current selection in the house finch. Evolution 54:987997.Google ScholarPubMed
Badyaev, A. V., Whittingham, L. A., and Hill, G. E.. 2001. The evolution of sexual size dimorphism in the house finch. III. Developmental basis. Evolution 55:176189.Google ScholarPubMed
Baltanás, A., Otero, M., Arqueros, L., Rossetti, G., and Rossi, V.. 2000. Ontogenetic changes in the carapace shape of the non-marine ostracod Eucypris virens (Jurine). Hydrobiologia 148:6572.CrossRefGoogle Scholar
Bonduriansky, R. 2007. Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838849.CrossRefGoogle ScholarPubMed
Bonduriansky, R., and Day, T.. 2003. The evolution of static allometry in sexually selected traits. Evolution 57:24502458.Google ScholarPubMed
Celeux, G., and Govaert, G.. 1995. Gaussian parsimonious clustering models. Pattern Recognition 28:781793.CrossRefGoogle Scholar
Cohen, A. C., and Morin, J. G.. 1990. Patterns of reproduction in ostracodes: a review. Journal of Crustacean Biology 10:184211.CrossRefGoogle Scholar
Coles, G. P., Whatley, R. C., and Moguilevsky, A.. 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology 37:71120.Google Scholar
Danielopol, D. L., Baltanás, A., Namiotko, T., Geiger, W., Pichler, M., Reina, M., and Roidmayr, G.. 2008. Developmental trajectories in geographically separated populations of non-marine ostracods: morphometric applications for palaeoecological studies. Senckenbergiana lethaea 88:183193.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., and Rubin, D. B.. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39:138.Google Scholar
Egset, C. K., Hansen, T. F., Le Rouzic, A., Bolstad, G. H., Rosenqvist, G., and Pélabon, C.. 2012. Artificial selection on allometry: change in elevation but not slope. Journal of Evolutionary Biology 25:938948.CrossRefGoogle Scholar
Emlen, S. T., and Oring, L. W.. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197:215223.CrossRefGoogle ScholarPubMed
Fisher, R. A. 1930. The genetical therory of natural selection. Clarendon Press, Oxford. 308. p.Google Scholar
Firmat, C., Lozano-Fernández, I., Agustí, J., Bolstad, G., Cuenca-Bescós, G., Hansen, T., and Pélabon, C.. 2014. Walk the line: 600 000 years of molar evolution constrained by allometry in the fossil rodent Mimomys savini . Philosophical Transactions of the Royal Society B 369:20140057.CrossRefGoogle Scholar
Forel, M.-B., Crasquin, S., Chitnarin, A., Angiolini, L., and Gaetani, M.. 2015. Precocious sexual dimorphism and the Lilliput effect in Neo-Tethyan Ostracoda (Crustacea) through the Permian–Triassic boundary. Palaeontology 58:409454.CrossRefGoogle Scholar
Fraley, C., Raftery, A. E., Murphy, T. B., and Scrucca, L.. 2012. mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation (Technical Report No. 597. Department of Statistics, University of Washington, Seattle.Google Scholar
Green, A. J. 1992. Positive allometry is likely with mate choice, competitive display and other functions. Animal Behaviour 43:170172.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.. 2012. The Geological Time Scale 2012. Elsevier, Boston.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Hand, D., Mannila, H., and , S. P. 2001. Principles of data mining. MIT Press, Cambridge, Mass. 578. p.Google Scholar
Hansen, T. F. 2012. Adaptive landscapes and macroevolutionary dynamics. Pp. 205226 in E. I. Svensson and R. Clasbeek, eds. The adaptive landscape in evolutionary biology. Oxford University Press, Oxford.Google Scholar
Horne, D. J., Cohen, A., and Martens, K.. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. Pp. 536. in J. A. Holmes, and Allan R. Chivas, eds. The Ostracoda: applications in Quaternary research. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
Hunt, G. 2004a. Phenotypic variance in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426443.2.0.CO;2>CrossRefGoogle Scholar
Hunt, G. 2004b. Phenotypic variance inflation in fossil samples: an empirical assessment. Paleobiology 30:487506.2.0.CO;2>CrossRefGoogle Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.CrossRefGoogle Scholar
Hunt, G. 2007a. Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus . Evolution 61:15601576.CrossRefGoogle ScholarPubMed
Hunt, G. 2007b. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences USA 104:1840418408.CrossRefGoogle ScholarPubMed
Hunt, G. 2008. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. In P. H. Kelly, and R. K. Bambach, eds. From evolution to geobiology: research questions driving paleontology at the start of a new century, Paleontological Society Papers 14: 117131. Yale University Printing and Publishing Services, New Heaven, Conn.Google Scholar
Hunt, G. 2013. Testing the link between phenotypic evolution and speciation: an integrated palaeontological and phylogenetic analysis. Methods in Ecology and Evolution 4:714723.CrossRefGoogle Scholar
Hunt, G. 2015. paleoTS: analyze paleontological time-series. https://CRAN.R-project.org/package=paleoTS.Google Scholar
Hunt, G., and Chapman, R. E.. 2001. Evaluating hypotheses of instar-grouping in arthropods: a maximum likelihood approach. Paleobiology 27:466484.2.0.CO;2>CrossRefGoogle Scholar
Hunt, G., and Rabosky, D. L.. 2014. Phenotypic evolution in fossil species: pattern and process. Annual Review of Earth and Planetary Sciences 42:421441.CrossRefGoogle Scholar
Hunt, G., and Roy, K.. 2006. Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.CrossRefGoogle ScholarPubMed
Hunt, G., Bell, M. A., and Travis, M. P.. 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700710.CrossRefGoogle Scholar
Hunt, G., Wicaksono, S. A., Brown, J. E., and MacLeod, K. G.. 2010. Climate-driven body-size trends in the ostracode fauna of the deep Indian Ocean. Palaeontology 53:12551268.CrossRefGoogle Scholar
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.CrossRefGoogle ScholarPubMed
Ikeya, N., and Ueda, H.. 1988. Morphological variations of Cytheromorpha acupunctata (Brady) in continuous populations at Hamana-ko Bay, Japan. Pp. 319340 in T. Hanai, N. Ikeya, and K. Ishizaki, eds. Evolutionary biology of Ostracoda. Elsevier, Amsterdam/Kodansha, Tokyo.Google Scholar
Kamiya, T. 1988. Different sex-ratios in two Recent species of Loxoconcha (Ostracoda). Senckenbergiana lethaea 68:337345.Google Scholar
Knell, R. J., Naish, D., Tomkins, J. L., and Hone, D. W. E.. 2013. Sexual selection in prehistoric animals: detection and implications. Trends in Ecology and Evolution 28:3847.CrossRefGoogle ScholarPubMed
Lande, R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292305.CrossRefGoogle ScholarPubMed
Martins, M. J. F., Vandekerkhove, J., Mezquita, F., Schmit, O., Rueda, J., Namiotko, T., and Rossetti, G.. 2009. Dynamics of sexual and parthenogenetic populations of Eucypris virens (Crustacea: Ostracoda) in three temporary ponds. Hydrobiologia 636:219232.CrossRefGoogle Scholar
Matzke-Karasz, R., Smith, R. J., Symonova, R., Miller, C. G., and Tafforeau, P.. 2009. Sexual intercourse involving giant sperm in Cretaceous ostracode. Science 324:1535.CrossRefGoogle ScholarPubMed
Motani, R., Jiang, D., Rieppel, O., Xue, Y., and Tintori, A.. 2015. Adult sex ratio, sexual dimorphism and sexual selection in a Mesozoic reptile. Proceedings of the Royal Society B 282:20151658.CrossRefGoogle Scholar
Norris, R. D., Wilson, P. A., and Blum, P., and the Expedition 342 Scientists. 2014. Paleogene Newfoundland sediment drifts and MDHDS test. Proceedings of the Integrated Ocean Drilling Program, 342.Google Scholar
Ozawa, H. 2013. The history of sexual dimorphism in Ostracoda (Arthropoda, Crustacea) since the Palaeozoic. Pp. 5180 in H. Moriyama, ed. Sexual dimorphism. InTech, Rijeka, Croatia.Google Scholar
Padian, K., and Horner, J. R.. 2013. Misconceptions of sexual selection and species recognition: a response to Knell et al. and to Mendelson and Shaw. Trends in Ecology and Evolution 28:249250.CrossRefGoogle ScholarPubMed
Pélabon, C., Firmat, C., Bolstad, G. H., Voje, K. L., Houle, D., Cassara, J., Le Rouzic, A., and Hansen, T. F.. 2014. Evolution of morphological allometry. Annals of the New York Academy of Sciences 1320:5875.CrossRefGoogle ScholarPubMed
Petrie, M. 1992. Are all secondary sexual display structures positively allometric and, if so, why? Animal Behaviour 43:173175.CrossRefGoogle Scholar
R Core Team. 2015. R: a language and environment for statistical computing.Google Scholar
Reyment, R. A. 1963. Studies on Nigerian Upper Cretaceous and Lower Tertiary Ostracoda. Part 2: Danian, Paleocene, and Eocene Ostracoda. Stockholm Contributions in Geology 10:1287.Google Scholar
Reyment, R. A. 1985. Phenotypic evolution in a lineage of the Eocene ostracod Echinocythereis . Paleobiology 11:174194.CrossRefGoogle Scholar
Rossi, V., and Menozzi, P.. 2012. Inbreeding and outbreeding depression in geographical parthenogens Heterocypris incongruens and Eucypris virens (Crustacea: Ostracoda). Italian Journal of Zoology 79:559567.CrossRefGoogle Scholar
Rossi, V., Bartoli, M., Bellavere, C., Gandolfi, A., Salvador, E., and Menozzi, P.. 2004. Heterocypris (Crustacea: Ostracoda) from the Isole Pelagie (Sicily, Italy): Hatching phenology of resting eggs. Italian Journal of Zoology 71:223231.CrossRefGoogle Scholar
Rossi, V., Martorella, A., and Menozzi, P.. 2013. Hatching phenology and voltinism of Heterocypris barbara (Crustacea: Ostracoda) from Lampedusa (Sicily, Italy). Journal of Limnology 72:227237.CrossRefGoogle Scholar
Saito-Kato, M., Tanimura, Y., Mori, S., and Julius, M.. 2015. Morphological evolution of Stephanodiscus (Bacillariophyta) in Lake Biwa from a 300 ka fossil record. Journal of Micropalaeontology 34:165179.CrossRefGoogle Scholar
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461464.CrossRefGoogle Scholar
Siveter, D. J., Tanaka, G., Farrell, U. C., Martin, M. J., Siveter, D. J., and Briggs, D. E. G.. 2014. Exceptionally preserved 450-million-year-old Ordovician ostracods with brood care. Current Biology 24:801806.CrossRefGoogle ScholarPubMed
Sheets, H. D., and Mitchell, C. E.. 2001. Uncorrected change produces the apparent dependence of evolutionary rate on interval. Paleobiology 27:207210.2.0.CO;2>CrossRefGoogle Scholar
Siepielski, A. M., DiBattista, J. D., and Carlson, S. M.. 2009. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecology Letters 12:12611276.CrossRefGoogle ScholarPubMed
Székely, T., Liker, A., Freckleton, R. P., Fichtel, C., and Kappeler, P. M.. 2014. Sex-biased survival predicts adult sex ratio variation in wild birds. Proceedings of the Royal Society B 281:20140342.CrossRefGoogle ScholarPubMed
Tanaka, G. 2016. Redescription of two krithid species (Crustacea, Ostracoda) from the Sea of Japan, with a comment on the taxonomic characters of Krithidae. Paleontological Research 20:3147.CrossRefGoogle Scholar
Vandekerkhove, J., Matzke-Karasz, R., Mezquita, F., and Rossetti, G.. 2007. Experimental assessment of the fecundity of Eucypris virens (Ostracoda, Crustacea) under natural sex ratios. Freshwater Biology 52:10581064.CrossRefGoogle Scholar
Voje, K. L., Hansen, T. F., Egset, C. K., Bolstad, G. H., and Pélabon, C.. 2014. Allometric constraints and the evolution of allometry. Evolution 68:866885.CrossRefGoogle ScholarPubMed
Yamaguchi, T., Norris, R. D., and Bornemann, A.. 2012. Dwarfing of ostracodes during the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347:130144.CrossRefGoogle Scholar
Yamaguchi, T., Matsui, H., and Nishi, H.. 2017a. Taxonomy of Maastrichtian–Thanetian deep-sea ostracodes from U1407, IODP Exp 342, off Newfoundland, Northwestern Atlantic. Part 1: Families Cytherellidae, Bairdiidae, Pontocyprididae, Bythocytheridae, and Cytheruridae. Paleontological Research 21:122.Google Scholar
Yamaguchi, T., Matsui, H., and Nishi, H.. 2017b. Taxonomy of Maastrichtian–Thanetian deep-sea ostracodes from U1407, IODP Exp 342, off Newfoundland, Northwestern Atlantic, part 2: Families Eucytheridae, Krithidae, Thaerocytheridae, Trachyleberididae, and Xestoleberididae. Paleontological Research 21:97–121.CrossRefGoogle Scholar