Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T03:18:37.850Z Has data issue: false hasContentIssue false

Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences

Published online by Cambridge University Press:  08 April 2016

Warren D. Allmon
Affiliation:
Paleontological Research Institution and Department of Earth and Atmospheric Sciences, Cornell University, 1259 Trumansburg Road, Ithaca, New York 14850, U.S.A. E-mail: [email protected]
Ronald E. Martin
Affiliation:
Department of Geological Sciences, College of Earth, Ocean and Environment, University of Delaware, Newark, Delaware 19716, U.S.A.

Abstract

We review and synthesize multiple biotic and abiotic proxies for marine nutrient and food availability, primary productivity, and food quality (stoichiometry) and propose what their relationships may have been to macroevolutionary processes, especially speciation. This review confirms earlier suggestions that there has been an overall increase in marine primary productivity over the Phanerozoic, but indicates that the increase has been irregular and that present levels may not be the peak. We integrate these indicators into a new estimate of relative primary productivity in the global ocean through the Phanerozoic. We then combine multiple, frequently conflicting ecological-evolutionary hypotheses into a general model for how primary production may affect speciation over geological time scales. This model, an elaboration and extension of the “speciation cycle” previously proposed by Grant and Grant, attempts to explain why an increase in food supply sometimes is associated with decreased diversity, and at other times with increased diversification. We propose some simple tests for the application of this model to the fossil record.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259277.Google Scholar
Aberhan, M., Weidemeyer, S., Kiessling, W., Scasso, R. A., and Medin, F. A. 2007. Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections. Geology 35:227230.Google Scholar
Abrams, P. A. 1995. Monotonic or unimodal diversity-productivity gradients: what does competition theory predict? Ecology 76:20192027.Google Scholar
Alegret, L., Thomas, E., and Lohmann, K. C. 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences USA 109:728732.Google Scholar
Algeo, T. J., and Scheckler, S. E. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London B 353:113130.Google Scholar
Allmon, W. D. 1988. Ecology of living turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:259284.Google Scholar
Allmon, W. D. 1992. A causal analysis of stages in allopatric speciation. Oxford Surveys in Evolutionary Biology 8:219257.Google Scholar
Allmon, W. D. 1996. Evolution and systematics of Cenozoic American Turritellidae (Gastropoda). I. Paleocene and Eocene species related to “Turritella mortoni Conrad” and “Turritella humerosa Conrad” from the U.S. Gulf and Atlantic Coastal Plains. Palaeontographica Americana 59:1134.Google Scholar
Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: a model for the Late Cenozoic marine record of the Western Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:926.Google Scholar
Allmon, W. D. 2005. Profusion and plenitude: what is the connection between abundance and speciation? North American Paleontological Convention, Halifax, Programme and Abstracts. PaleoBios 25 (Suppl. to No. 2):1213.Google Scholar
Allmon, W. D. 2007. Cretaceous marine nutrients, greenhouse carbonates, and the abundance of turritelline gastropods. Journal of Geology 115:509524.Google Scholar
Allmon, W. D. 2009. Speciation and shifting baselines: prospects for reciprocal illumination between evolutionary paleobiology and conservation biology. InDietl, G. P. and Flessa, K., eds. Conservation paleobiology: using the past to manage for the future. Paleontological Society Papers 15:245273.Google Scholar
Allmon, W. D., and Ross, R. M. 2001. Nutrients and evolution in the marine realm. Pp. 105148inAllmon, W. D. and Bottjer, D. J., eds. Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York.Google Scholar
Allmon, W. D., and Sampson, S. D. 2014. The stages of speciation: a stepwise approach to analysis of speciation in the fossil record. InW. D. Allmon and M. M. Yacobucci, eds. Species and speciation in fossil animals. University of Chicago Press, Chicago(in press).Google Scholar
Allmon, W. D., Nieh, J. C., and Norris, R. D. 1990. Drilling and peeling of turritelline gastropods since the Late Cretaceous. Palaeontology 33:595611.Google Scholar
Allmon, W. D., Carter, J. G., Kelley, P. H., and Schneider, J. 1991. Evolutionary dynamics of the Oligocene-Miocene molluscan radiation event in the western Atlantic region. Geological Society of America Abstracts with Program 23 (5):163.Google Scholar
Allmon, W. D., Emslie, S. D., Jones, D. S., and Morgan, G. S. 1996. Late Neogene paleoceanographic change along Florida's west coast: evidence and mechanisms. Journal of Geology 104:143162.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, M., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Alsenz, H., Regnery, J., Ashckenazi-Polivoda, S., Meilijson, A., Ron-Yankovich, L., Abramovich, S., Illner, P., Almogi-Labin, A., Feinstein, S., Berner, Z., and Püttmann, W. 2013. Sea surface temperature record of a Late Cretaceous tropical southern Tethys upwelling system. Palaeogeography, Palaeoclimatology, Palaeoecology 392:350358.Google Scholar
Anderson, L. D., Delaney, M. L., and Faul, K. L. 2001. Carbon to phosphorus ratios in sediments: implications for nutrient cycling. Global Biogeochemical Cycles 15:6579.Google Scholar
Armstrong, H. A., and Brasier, M. D. 2005. Microfossils, 2nd ed. Wiley-Blackwell, Malden, Mass.Google Scholar
Arthur, M. A., Zachos, J. C., and Jones, D. S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:4345.Google Scholar
Babcock, L. E. 2003. Trilobites in Paleozoic predator-prey systems, and their role in reorganization of early Paleozoic ecosystems. Pp. 5592inKelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator-prey interactions in the fossil record. Plenum/Kluwer, New York.Google Scholar
Bailey, S.-A., Horner-Devine, M. C., Luck, G., Moore, L. A., Carney, K. M., Anderson, S., Betrus, C., and Fleishman, E. 2004. Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes at multiple spatial scales. Ecography 27:207217.Google Scholar
Bains, S., Corfield, R., and Norris, R. 2000. Structure of the late Palaeocene carbon isotope excursion. GFF 122:1920.Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.Google Scholar
Barnosky, A. 2008. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proceedings of the National Academy of Sciences USA 105:1154311548.Google Scholar
Barron, E. J., Hay, W. W., and Thompson, S. L. 1989. The hydrologic cycle: a major variable during Earth history. Global and Planetary Change 1:157174.Google Scholar
Barton, N. 1989. Founder effect speciation. Pp. 229256inOtte, D. and Endler, J. A., eds. Speciation and its consequences. Sinauer, Sunderland, Mass.Google Scholar
Barton, N. 1996. Natural selection and random genetic drift as causes of evolution on islands. Philosophical Transactions of the Royal Society of London B 351:785795.Google Scholar
Barton, N., and Charlesworth, B. 1984. Genetic revolutions, founder effects and speciation. Annual Review of Ecology and Systematics 15:133164.Google Scholar
Beerling, D. J. 1999. Quantitative estimates of changes in marine and terrestrial primary productivity over the past 300 million years. Proceedings of the Royal Society of London B 266:18211827.Google Scholar
Beerling, D. J. 2000. Global terrestrial productivity in the Mesozoic era. InHart, M. B., ed. Climates: past and present. Geological Society of London Special Publication 18:117132.Google Scholar
Benitez-Nelson, C. R. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Science Reviews 51:109135.Google Scholar
Benton, M. J. 1979. Increase in total global biomass over time. Evolutionary Theory 4:123128.Google Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G. 1989. Ocean productivity and paleoproductivity: an overview. Pp. 134inBerger, W. H., Smetacek, V. S., and Wefer, G., eds. Productivity in the ocean: present and past. Wiley, Chichester, U.K.Google Scholar
Berner, R. A. 1997. Geochemistry and geophysics: the rise of plants and their effect on weathering and atmospheric CO2. Science 276:544546.Google Scholar
Berner, R. A. 1999. A new look at the long-term carbon cycle. GSA Today 8:16.Google Scholar
Blackburn, T. M., and Gaston, K. J. 1997. Who is rare? Artefacts and complexities of rarity determination. Pp. 4860inKunin, W. E. and Gaston, K. J., eds. The biology of rarity: causes and consequences of rare-common differences. Chapman and Hall, London.Google Scholar
Blob, R. W., and Badgley, C. 2007. Numerical methods for bonebed analysis. Pp. 333396inRogers, R. R., Eberth, D. A., and Fiorillo, A. R., eds. Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago.Google Scholar
Bonn, A., Storch, D., and Gaston, K. J. 2004. Structure of the species-energy relationship. Proceedings of the Royal Society of London B 271:16851691.Google Scholar
Botting, J. P. 2002. The role of pyroclastic volcanism in Ordovician diversification. InCrame, J. A. and Owen, A. W., eds. Palaeobiogeography and biodiversity change: the Ordovician and Mesozoic-Cenozoic radiations. Geological Society of London Special Publication 194:99113.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.Google Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Boyce, C. K., and Lee, J.-E. 2011. Could land plant evolution have fed the marine revolution? Paleontological Research 15:100105.Google Scholar
Brasier, M. D. 1990. Nutrients in the early Cambrian. Nature 347:521522.Google Scholar
Brasier, M. D. 1991. Nutrient flux and the evolutionary explosion across the Precambrian-Cambrian boundary interval. Historical Biology 5:8593.Google Scholar
Brasier, M. D. 1992a. Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society, London 149:621629.Google Scholar
Brasier, M. D. 1992b. Paleoceanography and changes in the biological cycling of phosphorous across the Precambrian-Cambrian boundary. Pp. 483523inLipps, J. H. and Bengtson, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.Google Scholar
Brasier, M. D. 1995a. Fossil indicators of nutrient levels. 1. Eutrophication and climate change. InBosence, D. W. J. and Allison, P. A., eds. Marine paleoenvironmental analysis from fossils. Geological Society of London Special Publication 83:113132.Google Scholar
Brasier, M. D. 1995b. Fossil indicators of nutrient levels. 2. Evolution and extinction in relation to oligotrophy. InBosence, D. W. J. and Allison, P. A., eds. Marine paleoenvironmental analysis from fossils. Geological Society of London Special Publication 83:133150.Google Scholar
Brinkman, D. B., Eberth, D. A., and Currie, P. J. 2007. From bonebeds to paleobiology: applications of bonebed data. Pp. 221264inRogers, R. R., Eberth, D. A., and Fiorillo, A. R., eds. Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago.Google Scholar
Bromley, R. G. 2004. A stratigraphy of marine bioerosion. InMcIlroy, D., ed. The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London Special Publication 228:455479.Google Scholar
Brooks, D. R., and McLennan, D. A. 1993. The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago.Google Scholar
Brown, J. H. 1981. Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist 21:877888.Google Scholar
Browning, E. L., and Watkins, D. K. 2008. Elevated primary productivity of calcareous nannoplankton associated with ocean anoxic event 1b during the Aptian/Albian transition (early Cretaceous). Paleoceanography 23:PA2213. doi: 10.1029/2007PA001413.Google Scholar
Bush, A. M., and Bambach, R. K. 2011. Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences 39:241269.Google Scholar
Butler, A. 1998. Acquisition and utilization of transition metal ions by marine organisms. Science 281:207210.Google Scholar
Caldeira, K., and Rampino, M. R. 1993. Aftermath of the end-Cretaceous mass extinction: possible biogeochemical stabilization of the carbon cycle and climate. Paleoceanography 8:515525.Google Scholar
Cárdenas, A. L., and Harries, P. J. 2010. Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nature Geoscience 3:430434.Google Scholar
Cardillo, M., Orme, C. D. L., and Owens, I. P. F. 2005. Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86:22782287.Google Scholar
Cardinale, B. J. 2011. Biodiversity improves water quality through niche partitioning. Nature 472:8689.Google Scholar
Cardinale, B. J., Bennett, D. M., Nelson, C. E., and Gross, K. 2009. Does productivity drive diversity or vice versa? A test of the multivariate productivity-diversity hypothesis in streams. Ecology 90:12271241.Google Scholar
Chalcraft, D. R., Williams, J. W., Smith, M. D., and Willig, M. R. 2004. Scale-dependence in the species-richness-productivity relationship: the role of species turnover. Ecology 85:27012708.Google Scholar
Charlesworth, B. 2009. Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10:195205.Google Scholar
Chase, J. M., and Liebold, M. A. 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427430.Google Scholar
Chavez, F. P., and Smith, S. L. 1995. Biological and chemical consequences of open ocean upwelling. Pp. 149169in Summerhayes et al. 1995.Google Scholar
Chown, S. L. 1997. Speciation and rarity: separating cause from consequence. Pp. 91109inKunin, W. E. and Gaston, K. J., eds. The biology of rarity. Chapman and Hall, London.Google Scholar
Claessen, D., Andersson, J., Persson, L., and de Roos, A. M. 2007. Delayed evolutionary branching in small populations. Evolutionary Ecology Research 9:5169.Google Scholar
Cogné, J. P., and Humler, E. 2006. Trends and rhythms in global seafloor generation rate. Geochemistry, Geophysics, Geosystems 7:Q03011. doi:10.1029/2005GC001148.Google Scholar
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009, Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences USA 106:65196524.Google Scholar
Connell, J. H., and Orias, E. 1964. The ecological regulation of species diversity. American Naturalist 98:399414.Google Scholar
Corfield, R. M., and Shackleton, N. J. 1988. Productivity change as a control on planktonic foraminiferal evolution after the Cretaceous/Tertiary boundary. Historical Biology 1:323344.Google Scholar
Coyne, J., and Orr, A. 2004. Speciation. Sinauer, Sunderland, Mass.Google Scholar
Cramer, B. D., and Saltzman, M. R. 2007. Fluctuations in epeiric sea carbonate production during Silurian positive carbon isotope excursions: a review of proposed paleoceanographic models. Palaeogeography, Palaeoclimatology, Palaeoecology 245:3745.Google Scholar
Crawford, M., and Marsh, D. 1989. The driving force: food, evolution and the future. Harper and Row, New York.Google Scholar
Culver, S. J., and Rawson, P. F., eds. 2000. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.Google Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.Google Scholar
Darwin, C. 1859. On the origin of species. John Murray, London.Google Scholar
DeAngelis, D. L. 1992. Dynamics of nutrient cycling and food webs. Chapman and Hall, London.Google Scholar
Deichmann, J. L., Lima, A. P., and Williamson, G. B. 2011. Effects of geomorphology and primary productivity on Amazonian leaf litter herpetofauna. Biotropica 43:149156.Google Scholar
de Goeij, J. M. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108110.Google Scholar
Delaney, M. L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles 12:563572.Google Scholar
Deline, B. 2009. The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology 35:175189.Google Scholar
Derry, L. A., and France-Lanord, C. 1996. Neogene growth of sedimentary organic carbon. Paleoceanography 11:267275.Google Scholar
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M. 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276279.Google Scholar
Diester-Haass, L., and Zahn, R. 2001. Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP sites 763 and 592. Palaeogeography, Palaeoclimatology, Palaeoecology 172:153170.Google Scholar
Diester-Haass, L., Billups, K., Gröcke, D. R., François, L., Lefebvre, V., and Emeis, K. C. 2009. Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle. Paleoceanography 24 (1):PA1209. doi: 10.1029/2008PA001605.Google Scholar
Duarte, C. M., and Agustí, S. 1998. The CO2 balance of unproductive aquatic ecosystems. Science 281:234236.Google Scholar
Dugdale, R. C. 1967. Nutrient limitation in the sea: dynamics, identification, and significances. Limnology and Oceanography 12:685695.Google Scholar
Duggen, S., Croot, P., Schacht, U., and Hoffmann, L. 2007. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophysical Research Letters 34:L01612. doi:10.1029/2006GL027522.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115inSchopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Elser, J. J., Watts, J., Schampel, J. H., and Farmer, J. 2006. Early Cambrian food webs on a trophic knife edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecology Letters 9:295303.Google Scholar
Elton, C. 1927. Animal ecology. Macmillan, New York.Google Scholar
Enquist, B. J., Jordan, M. A., and Brown, J. H. 1995. Connections between ecology, biogeography, and paleobiology: relationship between local abundance and geographic distribution in fossil and recent molluscs. Evolutionary Ecology 9:586604.Google Scholar
Eshet, Y., Almogi-Labin, A., and Bein, A. 1994. Dinoflagellate cysts, paleoproductivity and upwelling systems: a Late Cretaceous example from Israel. Marine Micropaleontology 23 (3):231240.Google Scholar
Evans, F. C. 1956. Ecosystem as the basic unit in ecology. Science 123:11271128.Google Scholar
Evans, K. L., Warren, P. H., and Gaston, K. J. 2005a. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews 80:125.Google Scholar
Evans, K. L., Greenwood, J. J. D., and Gaston, K. J. 2005b. Dissecting the species-energy relationship. Proceedings of the Royal Society of London B 272:21552163.Google Scholar
Evans, K. L., Jackson, S. F., Greenwood, J. J. D., and Gaston, K. J. 2006. Species traits and the form of individual species-energy relationships. Proceedings of the Royal Society of London B 273:17791787.Google Scholar
Falkowski, P. G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272275.Google Scholar
Falkowski, P. G. 2002. On the evolution of the carbon cycle. Pp. 318349inle B. Williams, P. J., Thomas, D. N., and Reynolds, C. S., eds. Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Blackwell Science, Oxford.Google Scholar
Falkowski, P. G., and Knoll, A. H., eds. 2007. Evolution of primary producers in the sea. Elsevier, Amsterdam.Google Scholar
Falkowski, P., Barber, R., and Smetacek, V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200206.Google Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354360.Google Scholar
Faul, K. L., Anderson, L. D., and Delaney, M. L. 2003. Late Cretaceous and early Paleogene nutrient and paleoproductivity records from Blake Nose, western North Atlantic Ocean. Paleoceanography 18:21.1–20.16.Google Scholar
Finnegan, S. 2013. Quantifying seafood through time: counting calories in the fossil record. InBush, A. M., Pruss, S. B., and Payne, J. L., eds. Ecosystems paleobiology and geobiology. Paleontological Society Papers 19:2149.Google Scholar
Finnegan, S., and Droser, M. 2005. Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology 31:480502.Google Scholar
Finnegan, S., and Droser, M. 2008. Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology 34:342359.Google Scholar
Finnegan, S., McClain, C. M., Kosnik, M. A., and Payne, J. L. 2011. Escargot through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252269.Google Scholar
Fischer, A. G., and Arthur, M. A. 1977. Secular variation in the pelagic realm. InCook, H. E. and Enos, P., eds. Deep-water carbonate environments. SEPM Special Publication 25:1950.Google Scholar
Flögel, S., Beckmann, B., Hofmann, P., Bornemann, A., Westerhold, T., Norris, R. D., Dullo, C., and Wagner, T. 2008. Evolution of tropical watersheds and continental hydrology during the Late Cretaceous greenhouse; impact on marine carbon burial and possible implications for the future. Earth and Planetary Science Letters 274:113.Google Scholar
Florin, A.-B., and Ödeen, A. 2002. Laboratory environments are not conducive for allopatric speciation. Journal of Evolutionary Biology 15:1019.Google Scholar
Fordyce, R. E. 2003. Cetacea evolution and Eocene-Oligocene oceans revisited. Pp. 154170inProthero, D. R., Ivany, L. C., and Nesbitt, E., eds. From greenhouse to icehouse: the marine Eocene-Oligocene transition. Columbia University Press, New York.Google Scholar
Fox, R. 1998. Energy and the evolution of life. W. H. Freeman, New York.Google Scholar
Frankham, R. 1996. Relationship of genetic variation to population size in wildlife. Conservation Biology 10:15001508.Google Scholar
Franklin, I. R. 1980. Evolutionary change in small populations. Pp. 135150inSoulé, M. E. and Wilcox, B. A., eds. Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, Mass.Google Scholar
Fraser, R. H., and Currie, D. J. 1996. The species richness-energy hypothesis in a system where historical factors are thought to prevail: coral reefs. American Naturalist 148 (1):138159.Google Scholar
Frey, J. K. 1993. Modes of peripheral isolate formation and speciation. Systematic Biology 42 (3):373381.Google Scholar
Friedman, M., Shimada, K., Martin, L. D., Everhart, M. J., Liston, J., Maltese, A., and Triebold, M. 2010. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327:990993.CrossRefGoogle ScholarPubMed
Futuyma, D. J. 1998. Evolutionary biology, 3rd ed. Sinauer, Sunderland, Mass.Google Scholar
Futuyma, D. J. 2005. Evolution, 2nd ed. Sinauer, Sunderland, Mass.Google Scholar
Gardin, S., Krystyn, L., Richoz, S., Bartolini, A., and Galbrun, B. 2012. Where and when the earliest coccolithophores? Lethaia 45:507523.Google Scholar
Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.Google Scholar
Gaston, K. J., and Blackburn, T. M., eds. 2000. Patterns and process in macroecology. Blackwell Science, Oxford.Google Scholar
Gaston, K. J., and Chown, S. 1999. Geographic range size and speciation. Pp. 236272inMagurran, A. E. and May, R. M., eds. Evolution of biological diversity. Oxford University Press, Oxford.Google Scholar
Gavrilets, S. 2004. Fitness landscapes and the origin of species. Princeton University Press, Princeton, N.J.Google Scholar
Gavrilets, S., and Hastings, A. 1996. Founder effect speciation: a theoretical reassessment. American Naturalist 147:466491.Google Scholar
Gillespie, J. H. 2001. Is the population size of a species relevant to its evolution? Evolution 55:21612169.Google ScholarPubMed
Giraud, F. 2009. Calcareous nannofossil productivity and carbonate production across the Middle-Late Jurassic transition in the French Subalpine Basin. Geobios 42:699714.Google Scholar
Goldhammer, T., Brüchert, V., Ferdelman, T. G., and Zabel, M. 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geoscience 3:557561.Google Scholar
Grant, P. R. 2001. Reconstructing the evolution of birds on islands: 100 years of research. Oikos 92:385403.Google Scholar
Grant, P. R., and Grant, B. R. 1996. Speciation and hybridization in island birds. Philosophical Transactions of the Royal Society of London B 351:765772.Google Scholar
Grant, P. R., and Grant, B. R. 1997. Genetics and the origin of bird species. Proceedings of the National Academy of Sciences USA 94:77687775.Google Scholar
Grant, P. R., and Grant, B. R. 2008. How and why species multiply: the radiation of Darwin's finches. Princeton University Press, Princeton, N.J.Google Scholar
Guo, Q., and Berry, W. L. 1998. Species richness and biomass: dissection of the hump-shaped relationships. Ecology 79:25552559.Google Scholar
Gupta, A. K., Singh, R. K., Joseph, S., and Thomas, E. 2004. Indian Ocean high-productivity event (10-8 Ma): linked to global cooling or to the initiation of the Indian monsoons? Geology 32:753756.Google Scholar
Hackett, J. D., Yoon, H. S., Butterfield, N. J., Sanderson, M. J., and Bhattacharya, D. 2007. Plastid endosymbiosis: sources and timing of the major events. Pp. 109132in Falkowski and Knoll 2007.Google Scholar
Haddad, N. M., Holyoak, M., Mata, T. M., Davies, K. F., Melbourne, B. A., and Preston, K. 2008. Species' traits predict the effects of disturbance and productivity on diversity. Ecology Letters 11 (4):348356.Google Scholar
Hallam, A. 1987. Mesozoic marine organic-rich shales. InBrooks, J. and Fleet, A. J., eds. Marine petroleum source rocks. Geological Society of London Special Publication 26 (1):251261.Google Scholar
Hallock, P. 1987. Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457471.Google Scholar
Handoh, I., Bigg, G. R., Jones, E. J. W., and Inoue, M. 1999. An ocean modeling study of the Cenomanian Atlantic: equatorial paleo-upwelling, organic-rich sediments and the consequences for a connection between the proto-North and South Atlantic. Geophysical Research Letters 26:223226.Google Scholar
Handoh, I. C., Bigg, G. R., and Jones, E. J. W. 2003. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeography, Palaeoclimatology, Palaeoecology 202:3158.Google Scholar
Haq, B. U., and Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322:6468.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561167.Google Scholar
Hay, W. W., and De Conto, R. M. 1999. Comparison of modern and Late Cretaceous meridional energy transport and oceanology. InBarrera, E. and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332:283300.Google Scholar
Hayes, J. M., Strauss, H., and Kaufman, A. J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global geochemical cycle of carbon during the past 800 Ma. Chemical Geology 161:103125.Google Scholar
Hiatt, E. E., and Budd, D. A. 2003. Extreme paleoceanographic conditions in a Paleozoic oceanic upwelling system: organic productivity and widespread phosphogenesis in the Permian Phosphoria Sea. InChan, M. A. and Archer, A. W., eds. Extreme depositional environments: mega endmembers in geologic time. Geological Society of America Special Paper 370:120.Google Scholar
Howarth, R. 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics 19:89110.Google Scholar
Howarth, R., and Marino, R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine environments: evolving views over three decades. Limnology and Oceanography 51:364376.Google Scholar
Huntley, J. W., and Kowalewski, M. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.Google Scholar
Hurlbert, A. H., and Jetz, W. 2010. More than “more individuals”: the nonequivalence of area and energy in the scaling of species richness. American Naturalist 176:E50E65.Google Scholar
Huston, M. 1979. A general hypothesis of species diversity. American Naturalist 113:81101.Google Scholar
Huston, M. 1994. Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge.Google Scholar
Hutchings, L., Pitcher, G. C., Probyn, T. A., and Bailey, G. W. 1995. The chemical and biological consequences of coastal upwelling. Pp. 6581inSummerhayes et al. 1995.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia: why are there so many kinds of animals? American Naturalist 93:145159.Google Scholar
Ingall, E., and Jahnke, R. 1997. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology 139 (1):219229.Google Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289inJablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385:250252.Google Scholar
Jablonski, D., and Roy, K. 2003. Geographical range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London B 270:401406.Google Scholar
Jackson, J. B. C., and Erwin, D. H. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution 21:322328.Google Scholar
Jeppson, L. 1990. An oceanic model for lithological and faunal changes tested on the Silurian record. Journal of the Geological Society, London 147:663674.Google Scholar
Jernvall, J., and Fortelius, M. 2002. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417:538540.Google Scholar
Jernvall, J., and Fortelius, M. 2004. Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. American Naturalist 164:614624.Google Scholar
Jickells, T. D. 1998. Nutrient biogeochemistry of the coastal zone. Science 281:217222.Google Scholar
Jones, D. S., and Allmon, W. D. 1995. Records of upwelling, seasonality and growth in stable-isotope profiles of Pliocene mollusk shells from Florida. Lethaia 28:6174.Google Scholar
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., and Falkowski, P. G. 2004. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Review of Ecology, Evolution, and Systematics 35:523556.Google Scholar
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., and Fennel, K. 2005. Biological overprint of the geological carbon cycle. Marine Geology 217:323338.Google Scholar
Katz, M. E., Fennel, K., and Falkowski, P. G. 2007. Geochemical and biological consequences of phytoplankton evolution. Pp. 405430in Falkowski and Knoll 2007.Google Scholar
Kerr, A. C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, London 155 (4):619626.Google Scholar
Kessels, K., Mutterlose, J., and Ruffell, A. 2003.Calcareous nannofossils from late Jurassic sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition. International Journal of Earth Sciences 92 (5):743757.CrossRefGoogle Scholar
Khain, V. E., and Seslavinsky, K. B. 1996. Historical geotectonics: Paleozoic. Translated byRao, P. M. . Russian Translations Series No. 115. Balkema, Rotterdam.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1996. Evolution of the fossil record: thickness trends in marine skeletal accumulations and their implications. Pp. 290336inJablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Kilham, P., and Kilham, S. S. 1980. The evolutionary ecology of phytoplankton. Pp. 571597inMorris, I., ed. The physiological ecology of phytoplankton. University of California Press, Berkeley.Google Scholar
Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge.Google Scholar
Klug, C., Kröger, B., Kiessling, W., Mullins, G. J., Servais, T., Frýda, J., Korn, D., and Turner, S. 2010. The Devonian nekton revolution. Lethaia 43:465477.Google Scholar
Knoll, M. A., and James, W. C. 1987. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15:10991102.Google Scholar
Knoll, A. H., Summons, R. E., Waldbauer, J. R., and Zumberge, J. E. 2007. The geological succession of primary producers in the ocean. Pp. 133163in Falkowski and Knoll 2007.Google Scholar
Kohn, D. 2009. Darwin's keystone: the principle of divergence. Pp. 87108inRuse, M. and Richard, R. J., eds. The Cambridge companion to the “Origin of Species.” Cambridge University Press, Cambridge.Google Scholar
Kondoh, M. 2001. Unifying the relationships of species richness to productivity and disturbance. Proceedings of the Royal Society of London B 268:269271.Google Scholar
Kump, L. R., and Arthur, M. A. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 16 (1):181198.Google Scholar
Lande, R. 1998. Anthropogenic, ecological and genetic factors in extinction. Pp. 2952inMace, G. M., Balmford, A., and Ginsberg, J. R., eds. Conservation in a changing world. Cambridge University Press, Cambridge.Google Scholar
La Roche, J. 2001. Aquatic primary productivity: the ultimate limiting nutrient, biogeochemical cycles and phytoplankton species dominance. Global Change Biology 7:859861.Google Scholar
Larson, R. L. 1991. Geological consequences of superplumes. Geology 19 (10):963966.Google Scholar
Lawton, J. H. 1993. Range, population abundance and conservation. Trends in Ecology and Evolution 8:409413.Google Scholar
Leckie, R. M. 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 73:107138.Google Scholar
Leigh, E. G. 1965. On the relation between the productivity, biomass, diversity, and stability of a community. Proceedings of the National Academy of Sciences USA 53:777783.Google Scholar
Leigh, E. G. 1981. The average lifetime of a population in a varying environment. Journal of Theoretical Biology 90:213239.Google Scholar
Leigh, E. G. Jr., and Vermeij, G. J. 2002. Does natural selection organize ecosystems for the maintenance of high productivity and diversity? Philosophical Transactions of the Royal Society of London B 357:709718.Google Scholar
Leimu, R., Mutikainen, P., Koricheva, J., and Fischer, M. 2006. How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology 94:942952.Google Scholar
Levinton, J. 1972. Stability and trophic structure in deposit-feeding and suspension-feeding communities. American Naturalist 106:472486.Google Scholar
Lindeman, R. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399418.Google Scholar
Lipps, J. H., and Mitchell, E. 1976. Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology 2:147155.Google Scholar
Liston, J., Newbrey, M. G., Challands, T. J., and Adams, C. E. 2013. Growth, age and size of the Jurassic pachycormid Leedsichthys problematicus (Osteichthyes: Actinopterygii). Pp. 145175inArratia, G., Schultze, H.-P., and Wilson, M. V. H., eds. Mesozoic fishes, Vol. 5. Global diversity and evolution. Friedrich Pfeil, Munich.Google Scholar
Liu, G., Feng, Q., Shen, J., Yu, J., He, W., and Algeo, T. J. 2013. Decline of siliceous sponges and spicule miniaturization induced by marine productivity collapse and expanding anoxia during the Permian-Triassic crisis in South China. Palaios 28:664679.Google Scholar
Lotka, A. J. 1922. Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences USA 8:147151.Google Scholar
Lotka, A. J. 1925. Elements of physical biology. Williams and Wilkins, Baltimore.Google Scholar
Lundholm, J. T. 2010. Relative importance of available energy, environmental heterogeneity, and seed availability for seedling emergence on a limestone pavement. Botany 88:10451056.Google Scholar
Ma, X., and Day, J. 2003. Revision of selected North American and Eurasian Late Devonian (Frasnian) species of Cyrtospirifer and Regelia (Brachiopoda). Journal of Paleontology 77:267292.Google Scholar
MacArthur, R. H., and Pianka, E. R. 1966. On optimal use of patchy environment. American Naturalist 100:603609.Google Scholar
Madin, J. S., Alroy, J., Aberhan, M., Fürsich, F. T., Kiessling, W., Kosnik, M. A., and Wagner, P. J. 2006. Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science 312:897900.Google Scholar
Magaritz, M. 1989. 13C minima follow extinction events: a clue to faunal radiation. Geology 17:337340.Google Scholar
Magaritz, M. 1991. Carbon isotopes, time boundaries, and evolution. Terra Nova 3:251256.Google Scholar
Margalef, R. 1968. Perspectives in ecological theory. University of Chicago Press, Chicago.Google Scholar
Martin, J. H., and Gordon, R. M. 1988. Northeast Pacific iron distribution in relation to phytoplankton productivity. Deep-Sea Research 35:177196.Google Scholar
Martin, R. E. 1995. Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans. Global and Planetary Change 11:123.Google Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11:209220.Google Scholar
Martin, R. E. 1997. One long experiment: scale and process in earth history. Columbia University Press, New York.Google Scholar
Martin, R. E. 1998. Catastrophic fluctuations in nutrient levels as an agent of mass extinction: upward scaling of biological processes? Pp. 405429inMcKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, Cambridge.Google Scholar
Martin, R. E. 2002. Cyclic and secular trends in preservation through geologic time: implications for the evolution of biogeochemical cycles. Pp. 6776inDe Renzi, M., Alonso, M. V. P., Belinchón, M., Peñalver, E., Montoya, P., and Márquez-Aliaga, A., eds. Current topics on taphonomy and fossilization. International Conference Taphos 2002, Valencia, Spain.Google Scholar
Martin, R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 36:179194.Google Scholar
Martin, R. E., and Quigg, A. 2012. Evolving phytoplankton stoichiometry fueled diversification of the marine biosphere. Geosciences 2:130146.Google Scholar
Martin, R. E., Quigg, A., and Podkovyrov, V. 2008. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeography, Palaeoclimatology, Palaeoecology 258:277291.Google Scholar
Marx, F. G., and Uhen, M. D. 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327:993996.Google Scholar
Maurer, B. A., and Nott, M. P. 1998. Geographic range fragmentation and the evolution of biological diversity. Pp. 3150inMcKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Mayr, E. 1954. Change of genetic environment and evolution. Pp. 157180inHuxley, J., Hardy, A. C., and Ford, E. B., eds. Evolution as a process. Allen and Unwin, London.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge.Google Scholar
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2012. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40 (2):147150.Google Scholar
McKinney, F., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.Google Scholar
McKinney, M. L. 1997. The biology of fossil abundance. Revista Espanola de Paleontología 11:125133.Google Scholar
McKinnon, J. S., and Rundle, H. D. 2002. Speciation in nature: the threespine stickleback model systems. Trends in Ecology and Evolution 17:480488.Google Scholar
Meloro, C., and Clauss, M. 2012. Predator-prey biomass fluctuations in the Plio-Pleistocene. Palaios 27:9096.Google Scholar
Miller, A. I., and Mao, S. 1995. Association of orogenic activity with the Ordovician radiation of marine life. Geology 23:305308.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005. The Phanerozoic record of global sea-level change. Science 310:12931298.Google Scholar
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., Willig, M. R., Dodson, S. I., and Gough, L. 2001. What is the observed relationship between species richness and productivity? Ecology 82:23812396.Google Scholar
Mönkkönen, M., Forsman, J. T., and Bokma, F. 2006. Energy availability, abundance, energy-use and species richness in forest bird communities: a test of the species-energy theory. Global Ecology and Biogeography 15:290302.Google Scholar
Monks, N. 1999. Cladistic analysis of Albian heteromorph ammonites. Palaeontology 42:907925.Google Scholar
Monks, N. 2002. Cladistic analysis of a problematic ammonite group: the Hamitidae (Cretaceous, Albian-Turonian) and proposals for new cladistic terms. Palaeontology 45:689707.Google Scholar
Newton, I. 2003. The speciation and biogeography of birds. Academic Press, Amsterdam.Google Scholar
Nigrini, C., and Caulet, J.-P. 1992. Late Neogene radiolarian assemblages characteristic of Indo-Pacific areas of upwelling. Micropaleontology 38:139164.Google Scholar
Nilsen, E. B., Anderson, L. D., and Delaney, M. L. 2003. Paleoproductivity, nutrient burial, climate change and the carbon cycle in the western equatorial Atlantic across the Eocene/Oligocene boundary. Paleoceanography 18 (3):2.12.11.Google Scholar
Novack-Gottshall, P. M. 2008. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210228.Google Scholar
Novack-Gottshall, P. M., and Lanier, M. A. 2008. Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences of USA 105:54305434.Google Scholar
Nützel, A., and Frýda, J. 2003. Paleozoic plankton revolution: evidence from early gastropod ontogeny. Geology 31:829831.Google Scholar
Nützel, A., Lehnert, O., and Frýda, J. 2007. Origin of planktotrophy: evidence from early molluscs. Evolution and Development 9:311312.Google Scholar
Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27:55112.Google Scholar
Ohta, T. 1972. Population size and the rate of evolution. Journal of Molecular Evolution 1:305314.Google Scholar
Olszewski, T. D., and Kidwell, S. M. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:123.Google Scholar
Parrish, J. T. 1982. Upwelling and petroleum source beds, with reference to the Paleozoic. American Association of Petroleum Geologists Bulletin 66:750774.Google Scholar
Parrish, J. T. 1987. Palaeo-upwelling and the distribution of organic-rich rocks. InBrooks, J. and Fleet, A. J., eds. Marine petroleum source rocks. Geological Society of London Special Publication 26:199206. Blackwell Scientific, Oxford.Google Scholar
Parrish, J. T. 1990. Paleogeographic and paleoclimatic setting of the Miocene phosphogenic episode. Pp. 223240inBurnett, W. C. and Riggs, S. R., eds. Phosphate deposits of the world, Vol. 3. Neogene to modern phosphorites. Cambridge University Press, Cambridge.Google Scholar
Parrish, J. T. 1998. Interpreting pre-Quaternary climate from the geologic record. Columbia University Press, New York.Google Scholar
Parrish, J. T., and Curtis, R. L. 1982. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeography, Palaeoclimatology, Palaeoecology 40:3166.Google Scholar
Parrish, J. T., and Gautier, D. L. 1993. Sharon Springs Member of the Pierre Shale: upwelling in the Western Interior Seaway? InCaldwell, W. G. E. and Kauffman, E. G., eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper 39:319332.Google Scholar
Paul, C. R. C., and Mitchell, S. F. 1994. Is famine a common factor in marine mass extinctions? Geology 22:679682.Google Scholar
Paulay, G., and Meyer, C. 2002. Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integrative and Comparative Biology 42:922934.Google Scholar
Payne, J. L., and Finnegan, S. 2006. Controls on marine animal biomass through geological time. Geobiology 4:110.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A. Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106:2427.Google Scholar
Paytan, A. 2009. Ocean paleoproductivity. Pp. 644651inGornitz, V., ed. Encyclopedia of paleoclimatology and ancient environments. Springer, Berlin.Google Scholar
Paytan, A., Averyt, K., Faul, K., Gray, E., and Thomas, E. 2007. Barite accumulation, ocean productivity, and Sr/Ba in barite across the Paleocene-Eocene thermal maximum. Geology 35:11391142.Google Scholar
Peterson, L. C., Abbott, M. R., Anderson, D. M., Caulet, J.-P., Conté, M. H., Emeis, K.-C., Kemp, A. E. S., and Summerhayes, C. P. 1995. Group report: how do upwelling systems vary through time? Pp. 285311in Summerhayes et al. 2005.Google Scholar
Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., and Lyons, T. W. 2010. The evolution of the marine phosphate reservoir. Nature 467:10881090.Google Scholar
Premoli Silva, I., and Sliter, W. V. 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. InBarrera, E. and Johnson, C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332:301328.Google Scholar
Pyenson, N. D., Irmis, R. B., Lipps, J. H., Barnes, L. G., Mitchell, E. D. Jr., and McLeod, S. A. 2009. Origin of a widespread marine bonebed deposited during the middle Miocene Climatic Optimum. Geology 37:519522.Google Scholar
Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., and Ho, T.-Y. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291294.Google Scholar
Quigg, A., Irwin, A. J., and Finkel, Z. V. 2010. Evolutionary imprint of endosymbiosis of elemental stoichiometry: testing inheritance hypotheses. Proceedings of the Royal Society of London B 278:526534.Google Scholar
Rabalais, N. N. 2005. The potential for nutrient overenrichment to diminish marine biodiversity. Pp. 109122inNorse, E. A. and Crowder, L. B., eds. Marine conservation biology: the science of maintaining the sea's biodiversity. Island Press, Washington, D.C.Google Scholar
Raymo, M. E., and Ruddiman, W. F. 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117122.Google Scholar
Rea, D. K., Zachos, J. C., Owen, R. M., and Gingerich, P. D. 1990. Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeography, Palaeoclimatology, Palaeoecology 70:117128.Google Scholar
Reboulet, S., Giraud, F., and Proux, O. 2005. Ammonoid abundance variations related to changes in trophic conditions across the Oceanic Anoxic Event 1d (latest Albian, SE France). Palaios 20:121141.Google Scholar
Redfield, A. C., Ketchum, B. H., and Richards, F. A. 1963. The influence of organisms on the composition of sea-water. The Sea 2:2677.Google Scholar
Reverdin, G. 1995. The physical processes of open ocean upwelling systems. Pp. 125148in Summerhayes et al. 1995.Google Scholar
Rhodes, M. C., and Thayer, C. W. 1991. Mass extinctions: ecological selectivity and primary production. Geology 19:877880.Google Scholar
Rhodes, M. C., and Thompson, R. J. 1993. Comparative physiology of suspension-feeding in living brachiopods and bivalves: evolutionary implications. Paleobiology 19:322334.Google Scholar
Ricklefs, R. E. 1970. Stage of taxon cycle and distribution of birds on Jamaica, Greater Antilles. Evolution 24:475477.Google Scholar
Ricklefs, R. E. 1990. Ecology, 3rd ed. W. H. Freeman, New York.Google Scholar
Ricklefs, R. E., and Bermingham, E. 1999. Taxon cycles in the Lesser Antillean avifauna. Ostrich 70:4959.Google Scholar
Ricklefs, R. E., and Bermingham, E. 2002. The concept of the taxon cycle in biogeography. Global Ecology and Biogeography 11:353361.Google Scholar
Ricklefs, R. E., and Cox, G. W. 1972. Taxon cycles in the West Indian avifauna. American Naturalist 106:195219.Google Scholar
Ricklefs, R. E., and Cox, G. W. 1978. Stage of taxon cycle, habitat distribution, and population density in the avifauna of the West Indies. American Naturalist 112:875895.Google Scholar
Ricklefs, R. E., and Miller, G. 2000. Ecology, 4th ed. W. H. Freeman, New York.Google Scholar
Ridley, M. 1996. Evolution. Blackwell Science, Cambridge, Mass.Google Scholar
Riebesell, U., and Wolf-Gladrow, D. A. 2002. Supply and uptake of inorganic nutrients. Pp. 109155inWilliams, P. J. le B., Thomas, D. N., and Reynolds, C. S., eds. Phytoplankton productivity. Carbon assimilation in marine and freshwater ecosystems. Blackwell Science, Cambridge, Mass.Google Scholar
Riquier, L., Tribovillard, N., Averbuch, O., Joachimski, M. M., Racki, G., Devleeschouwer, X., and Riboulleau, A. 2005. Productivity and bottom water redox conditions at the Frasnian-Famennian boundary on both sides of the Eovariscan Belt: constraints from trace-elemental geochemistry. Developments in Palaeontology and Stratigraphy 20:199224.Google Scholar
Rosenzweig, M. L. 1975. On continental steady states of species diversity. Pp. 121140inCody, M. and Diamond, J., eds. The ecology and evolution of communities. Harvard University Press, Cambridge.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, New York.Google Scholar
Rosenzweig, M. L., and Abramsky, Z. 1993. How are diversity and productivity related? Pp. 5265inRicklefs, R. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Rothman, D. H. 2001. Global biodiversity and the ancient carbon cycle. Proceedings of the National Academy of Sciences USA 98:43054310.Google Scholar
Roughgarden, J., and Pacala, S. 1989. Taxon cycle among Anolis lizard populations: review of evidence. Pp. 403432inOtte, D. and Endler, J. A., eds. Speciation and its consequences. Sinauer, Sunderland, Mass.Google Scholar
Roy, M., Martin, J. B., Cherrier, J., Cable, J. E., and Smith, C. G. 2010. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary. Geochimica et Cosmochimica Acta 74:55605573.Google Scholar
Ruddiman, W. F., ed. 1997. Tectonic uplift and climate change. Plenum, New York.Google Scholar
Sakko, A. L. 1998. The influence of the Benguela upwelling system on Namibia's marine biodiversity. Biodiversity and Conservation 7:419433.Google Scholar
Salamy, K. A., and Zachos, J. C. 1999. Latest Eocene-Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeography, Palaeoclimatology, Palaeoecology 145:6177.Google Scholar
Saltzman, M. R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33:573576.Google Scholar
Sambatti, J. B. M., Stahl, E., and Harrison, S. 2008. Metapopulation structure and the conservation consequences of population fragmentation. Pp. 5067inCarroll, S. P. and Fox, C. W., eds. Conservation biology: evolution in action. Oxford University Press, New York.Google Scholar
Schidlowski, M., Hayes, J. M., and Kaplan, I. R. 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, nitrogen, and hydrogen. Pp. 149186inSchopf, J. W., ed. Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, N.J.Google Scholar
Schumacher, S., and Lazarus, D. 2004. Regional differences in pelagic productivity in the late Eocene to early Oligocene—a comparison of southern high latitudes and lower latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 214:243263.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint. Pp. 298312inEinsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B., and Munnecke, A. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.Google Scholar
Sheehan, P. M., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.Google Scholar
Siesser, W. G. 1995. Paleoproductivity of the Indian Ocean during the Tertiary Period. Global and Planetary Change 11:7188.Google Scholar
Signor, P. W., and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.Google Scholar
Sinton, C. W., and Duncan, R. A. 1997. Potential links between ocean plateau volcanism and global anoxia at the Cenomanian-Turonian boundary. Economic Geology 92:836842.Google Scholar
Slater, G. J., Price, S. A., Santini, F., and Alfaro, M. E. 2010. Diversity vs disparity and the radiation of modern cetaceans. Proceedings of the Royal Society London B 277:30973104.Google Scholar
Slatkin, M. 1996. In defense of founder-flush theories of speciation. American Naturalist 147:493505.Google Scholar
Slobodkin, L. B. 1962. Energy and animal ecology. Advances in Ecology 4:69101.Google Scholar
Smith, R. L. 1995. The physical processes of coastal ocean upwelling systems. Pp. 3964in Summerhayes et al. 2005.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Stanley, S. M., and Powell, M. G.Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31 (10):877880.Google Scholar
Steele-Petrovič, H. M. 1979. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities. Palaeontology 22:101134.Google Scholar
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, A. Y. W., Rabosky, D. L., Nielsen, R., Rahbeck, C., Glenner, H., S⊘rensen, M. V., and Willerslev, E. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.Google Scholar
Sterner, R. W., and Elser, J. J. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, N.J.Google Scholar
Stoll, H. M., and Bains, S. 2003. Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea. Paleoceanography 18:27–1–27-11.Google Scholar
Stoll, H. M., and Schrag, D. P.Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 168:311336.Google Scholar
Strauss, H., Des Marais, D. J., Hayes, J. M., and Summons, R. E. 1992. Concentrations of organic carbon and maturities and elemental compositions of kerogens. Pp. 9599inSchopf, J. W. and Klein, C., eds. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Strömberg, C. A. E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences 39:517544.Google Scholar
Summerhayes, C. P., Emeis, K.-C., Angel, M. V., Smith, R. L., and Zeitzschel, B. 1995. Upwelling in the ocean: modern processes and ancient records. Wiley, New York.Google Scholar
Sundberg, F. A. 2004. Cladistic analysis of Early Middle Cambrian kochaspid trilobites (Ptychopariida). Journal of Paleontology 78:920940.Google Scholar
Suto, I., Kawamura, K., Hagimoto, S., Teraishi, A., and Tanaka, Y. 2012. Changes in upwelling mechanisms drove the evolution of marine organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 339–341:3951.Google Scholar
Tappan, H. 1968. Primary production, isotopes, extinctions and the atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology 4:187210.Google Scholar
Tappan, H. 1971. Microplankton, ecological succession and evolution. Pp. 10581103inYochelson, E. L., ed. Proceedings of the North American Paleontological Convention, Chicago, 1969, Part H.Google Scholar
Tappan, H. 1986. Phytoplankton: below the salt at the global table. Journal of Paleontology 60:545554.Google Scholar
Tardy, Y., N'Kounkou, R., and Probst, J. L. 1989. The global water cycle and continental erosion during Phanerozoic time (570 my). American Journal of Science 289:455483.Google Scholar
Teusch, K. P., Jones, D. S., and Allmon, W. D. 2002. Morphological variation in a turritellid gastropod from the Pleistocene to Recent of Chile: associations with upwelling intensity. Palaios 17:366377.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625inTevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Thomas, E., and Gooday, A. J. 1996. Cenozoic deep-sea benthic foraminifers: tracers for changes in oceanic productivity? Geology 24:355358.Google Scholar
Thompson, E. I., and Schmitz, B. 1997. Barium and the late Paleocene δ13C maximum: evidence of increased marine surface productivity. Paleoceanography 12:239254.Google Scholar
Tomašových, A. 2006. Brachiopod and bivalve ecology in the Late Triassic (Alps, Austria): onshore-offshore replacements caused by variations in sediment and nutrient supply. Palaios 21:344368.Google Scholar
Trammer, J. 2005. Maximum body size in a radiating clade as a function of time. Evolution 59:941947.Google Scholar
Tucker, M. E. 1992. The Precambrian-Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization. Journal of the Geological Society 149:655668.Google Scholar
Tuite, M. L. Jr. 2009. Linking terrestrial biogeochemistry to declining rates of origination in Middle and Late Devonian seas. Ninth North American Paleontological Convention Abstracts. Cincinnati Museum Center Scientific Contributions No. 3:5.Google Scholar
Twitchett, R. J. 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 232:190213.Google Scholar
Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary productivity. Nature 400:525531.Google Scholar
Ulanowicz., R. E. 1997. Ecology, the ascendant perspective. Columbia University Press, New York.Google Scholar
Uyeda, J. C., Arnold, S. J., Hohenlohe, P. A., and Mead, L. S. 2009. Drift promotes speciation by sexual selection. Evolution, 63:583594.Google Scholar
Valentine, J. W. 1971. Resource supply and species diversity patterns. Lethaia 4:5161.Google Scholar
Valiela, I. 1995. Marine ecological processes, 2nd ed. Springer, New York.Google Scholar
van de Schootbrugge, B., Bailey, T., Rosenthal, Y., Katz, M. E., Wright, J. D., Feist-Burkhardt, S., Miller, K. G., and Falkowski, P. G. 2005. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31:7397.Google Scholar
Van Valen, L. 1976. Energy and evolution. Evolutionary Theory 1:179229.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161:5988.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.Google Scholar
Vermeij, G. J. 2001. Innovation and evolution at the edge: origins and fates of gastropods with a labral tooth. Biological Journal of the Linnean Society 72:461508.Google Scholar
Vermeij, G. J. 2002. The geography of evolutionary opportunity: hypothesis and two cases in gastropods. Integrative and Comparative Biology 42:935940.Google Scholar
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 2010. Shifting sources of productivity in the coastal marine tropics during the Cenozoic era. Proceedings of the Royal Society of London B 278:23622368.Google Scholar
Vermeij, G. J. 2011. The energetics of modernization: the last one hundred million years of biotic evolution. Paleontological Research 15:5461.Google Scholar
Vermeij, G. J. 2013. On escalation. Annual Review of Earth and Planetary Sciences 41:119.Google Scholar
Vermeij, G. J., and Herbert, G. 2004. Measuring relative abundance in fossil and living assemblages. Paleobiology 30:14.Google Scholar
Vermeij, G. J., and Roopnarine, P. D. 2013. Reining in the Red Queen: the dynamics of adaptation and extinction reexamined. Paleobiology 39 (4):560575.Google Scholar
Villa, G., Fioroni, C., Persico, D., Roberts, A. P., and Florindo, F. 2013. Middle Eocene to Late Oligocene Antarctic glaciation/deglaciation and southern ocean productivity. Paleoceanography. doi: 10.1002/2013PA002518.Google Scholar
Vitousek, P. M., and Howarth, R. W. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87115.Google Scholar
Vonlanthen, P., Bittner, D., Hudson, A. G., Young, K. A., Müller, R., Lundsgaard-Hansen, B., Roy, D., Di Piassa, S., Largiader, C. R., and Seehausen, O. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357362.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:6184.Google Scholar
Vrba, E. S., and DeGusta, D. 2004. Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Philosophical Transactions of the Royal Society of London B 359:285293.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891291.Google Scholar
Wagner, T., Wallmann, K., Herrle, J. O., Hofmann, P., and Stuesser, I. 2007. Consequences of moderate 25,000 yr lasting emission of light CO2 into the mid-Cretaceous ocean. Earth and Planetary Science Letters 259:200211.Google Scholar
Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P., and Parmenter, R. 1999. The relationship between productivity and species diversity. Annual Review of Ecology and Systematics 30:257300.Google Scholar
Wallace, A. R. 1878. Tropical nature, and other essays. Macmillan, London.Google Scholar
Ward, P. D., Haggart, J. W., Carter, E. S., Wilbur, D., Tipper, H. W., and Evans, T. 2001. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292:11481151.Google Scholar
Webb, T. J., and Gaston, K. J. 2000. Geographic range size and evolutionary age in birds. Proceedings of the Royal Society of London B 267:18431850.Google Scholar
Whittaker, R. H., and Heegaard, E. 2003. What is the observed relationship between species richness and productivity? Comment. Ecology 84:33843390.Google Scholar
Whittaker, R. H., and Likens, G. E. 1975. The biosphere and man. Pp. 305328inLieth, H. and Whittaker, R. H., eds. Primary productivity in the biosphere. Springer, Berlin.Google Scholar
Wignall, P. B. 1994. Black shales. Oxford University Press, Oxford.Google Scholar
Williams, R. J. P., and Frausto Da Silva, J. J. R. 1996. The natural selection of the chemical elements. Bath Press, Bath, U.K.Google Scholar
Wilson, E. O. 1961. The nature of the taxon cycle in the Melanesian ant fauna. American Naturalist 95:169193.Google Scholar
Witman, J. D., Cusson, M., Archambault, P., Pershing, A. J., and Mieszkowska, N. 2008. The relation between productivity and species diversity in temperate-arctic marine ecosystems. Ecology 89:S66S80.Google Scholar
Witzke, B. J. 1987. Models for circulation patterns in epicontinental seas applied to Paleozoic facies of North America craton. Paleoceanography 2:229248.Google Scholar
Woolfit, M., and Bromham, L. 2005. Population size and molecular evolution on islands. Proceedings of the Royal Society of London B 272:22772282.Google Scholar
Worm, B., and Lotze, H. K. 2006. Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnology and Oceanography 51:569579.Google Scholar
Wright, D. H. 1983. Species-energy theory: an extension of species-area theory. Oikos 41:496506.Google Scholar
Wright, D. H., Currie, D. J., and Maurer, B. A. 1993. Energy supply and patterns of species richness on local and regional scales. Pp. 6674inRicklefs, R. and Schluter, D., eds. Species diversity in ecological communities. University of Chicago Press, Chicago.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97159.Google Scholar
Zachos, J. C., Arthur, M. A., and Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:6164.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Zhuravlev, A. Y. 2001 Biotic diversity and structure during the Neoproterozoic-Ordovician transition. Pp. 173199inZhuravlev, A. Y. and Riding, R., eds. The ecology of the Cambrian radiation. Columbia University Press, New York.Google Scholar
Zotin, A. I. 1984. Bioenergetic trends of evolutionary progress of organisms. Pp. 451458inLamprecht, I. and Zotin, A. I., eds. Thermodynamics and regulation of biological processes. Walter de Gruyter, Berlin.Google Scholar